
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbsd20

Journal of Biomolecular Structure and Dynamics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tbsd20

Integrated gene expression profiling and
functional enrichment analyses to discover
biomarkers and pathways associated with
Guillain-Barré syndrome and autism spectrum
disorder to identify new therapeutic targets

Rizone Al Hasib, Md. Chayan Ali, Md Habibur Rahman, Sabbir Ahmed,
Shaharin Sultana, Sadia Zannat Summa, Mst. Sharmin Sultana Shimu, Zinia
Afrin & Mohammad Abu Hena Mostofa Jamal

To cite this article: Rizone Al Hasib, Md. Chayan Ali, Md Habibur Rahman, Sabbir Ahmed,
Shaharin Sultana, Sadia Zannat Summa, Mst. Sharmin Sultana Shimu, Zinia Afrin &
Mohammad Abu Hena Mostofa Jamal (29 Sep 2023): Integrated gene expression profiling and
functional enrichment analyses to discover biomarkers and pathways associated with Guillain-
Barré syndrome and autism spectrum disorder to identify new therapeutic targets, Journal of
Biomolecular Structure and Dynamics, DOI: 10.1080/07391102.2023.2262586

To link to this article:  https://doi.org/10.1080/07391102.2023.2262586

View supplementary material Published online: 29 Sep 2023.

Submit your article to this journal Article views: 66

View related articles View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tbsd20
https://www.tandfonline.com/loi/tbsd20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07391102.2023.2262586
https://doi.org/10.1080/07391102.2023.2262586
https://www.tandfonline.com/doi/suppl/10.1080/07391102.2023.2262586
https://www.tandfonline.com/doi/suppl/10.1080/07391102.2023.2262586
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07391102.2023.2262586
https://www.tandfonline.com/doi/mlt/10.1080/07391102.2023.2262586
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2023.2262586&domain=pdf&date_stamp=29 Sep 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2023.2262586&domain=pdf&date_stamp=29 Sep 2023


Integrated gene expression profiling and functional enrichment analyses to 
discover biomarkers and pathways associated with Guillain-Barr�e syndrome and 
autism spectrum disorder to identify new therapeutic targets

Rizone Al Hasiba,b, Md. Chayan Alic�, Md Habibur Rahmand,e, Sabbir Ahmeda, Shaharin Sultanaa,b,  
Sadia Zannat Summaa,b, Mst. Sharmin Sultana Shimuf, Zinia Afrina and Mohammad Abu Hena Mostofa Jamala,b 

aDepartment of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh; bLaboratory of Medical and Environmental 
Biotechnology Islamic University, Kushtia, Bangladesh; cDepartment of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The 
Netherlands; dDepartment of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh; eCenter for Advanced 
Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, Bangladesh; fDepartment of Genetic Engineering and 
Biotechnology, University of Rajshahi, Rajshahi, Bangladesh 
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ABSTRACT 
Guillain-Barr�e syndrome (GBS) is one of the most prominent and acute immune-mediated peripheral 
neuropathy, while autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmen
tal disorders. The complete mechanism regarding the neuropathophysiology of these disorders is still 
ambiguous. Even after recent breakthroughs in molecular biology, the link between GBS and ASD 
remains a mystery. Therefore, we have implemented well-established bioinformatic techniques to iden
tify potential biomarkers and drug candidates for GBS and ASD. 17 common differentially expressed 
genes (DEGs) were identified for these two disorders, which later guided the rest of the research. 
Common genes identified the protein-protein interaction (PPI) network and pathways associated with 
both disorders. Based on the PPI network, the constructed hub gene and module analysis network 
determined two common DEGs, namely CXCL9 and CXCL10, which are vital in predicting the top drug 
candidates. Furthermore, coregulatory networks of TF-gene and TF-miRNA were built to detect the 
regulatory biomolecules. Among drug candidates, imatinib had the highest docking and MM-GBSA 
score with the well-known chemokine receptor CXCR3 and remained stable during the 100 ns molecu
lar dynamics simulation validated by the principal component analysis and the dynamic cross-correl
ation map. This study predicted the gene-based disease network for GBS and ASD and suggested 
prospective drug candidates. However, more in-depth research is required for clinical validation.

KEY POINTS 

� 17 common differentially expressed genes (DEGs) were identified from 693 DEGs of the GBS dataset 
(GSE72748) and 365 DEGs of the ASD dataset (GSE113834), which is the preliminary part of this investigation.
� From the PPI network analysis, a total of 10 hub genes were identified and two common DEGs 

named CXCL9 and CXCL10 were found in both the hub gene and essential module analysis.
� The identified leading pathways and GO pathways, TF-gene interaction, and TF-miRNAs network 

has made the process more relevant and appropriate for suggesting probable drug candidates.
� Among the drug candidates, imatinib was suggested as the main drug candidate due to its inter

action with the hub gene CXCL9 and CXCL10 and lower p value than the other candidates. It showed 
the highest binding affinity score and remained stable with the CXCR3 chemokine receptor.
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1. Introduction

Guillain-Barr�e syndrome (GBS) is an inflammatory, acute- 

onset, immune-mediated peripheral nervous system disorder 

that has become the most prevalent contributor to neuro

muscular paralysis (Berciano et al., 2017; Chang et al., 2012). 

GBS has significant residual morbidity (Bae et al., 2014) that 

worsens with age (0.06 per 100000 in infants and 2.07 per 

100000 in older people aged 80 years or above), and males 
are considerably more prone to contract the disease than 
females (Webb et al., 2015). Although the specific reason 
behind the pathophysiology of GBS is not fully understood, 
it is believed that the condition has resulted from an adverse 
immune response to infections that affects the peripheral 
nerves (Leonhard et al., 2019). Before the onset of progres
sive muscle weakness, the majority of patients first exhibit 
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an underlying disease, most often an upper respiratory tract 
infection (Shahrizaila et al., 2021). Various GBS outbreaks 
have been reported, most of which have been linked to 
infections with Campylobacter jejuni, while, other agents, like 
the Zika Virus (ZIKV), have also been closely connected 
(Anaya et al., 2017; Heikema et al., 2015). Based on the 
molecular mimicry of such infectious agents, they may react 
adversely with myelin or axonal parts of peripheral nerves, 
leading to various types of GBS (Ansar & Valadi, 2015; Dash 
et al., 2015).

In addition, the pathogenicity of GBS can be triggered by 
some key factors, such as immunization, trauma, bone-mar
row transplantation, and surgery (Fujimura, 2013). 
Dysregulation and aberrant expression of several genes, par
ticularly cytokine-coding genes, have previously been found 
in peripheral blood specimens retrieved from GBS patients 
while they undergo high-throughput expression profiling 
(Safa et al., 2021; Zhang et al., 2013). Although several earlier 
studies have shown links between particular genes and the 
prevalence of GBS (Blum et al., 2014, 2018), the specific 
mechanism underlying the genetic basis of GBS is still elusive 
(Barzegar et al., 2012).

Besides, autism spectrum disorder (ASD) is a neurodeve
lopmental disability defined by deficiencies in social and 
communication skills, speech difficulties, and repetitive 
behaviors that are assumed to be driven by abnormal neuro
transmission mechanisms (Nisar et al., 2022). This prolonged 
neurodevelopmental condition exhibits both core and associ
ated symptoms. Loss of social interactions and diffusive, ster
eotyped, and restricted behavior are the core symptoms of 
autistic people, while impatience, stress, violence, and vari
ous comorbidities are listed as associated symptoms 
(Bhandari et al., 2020). About 0.6 to 0.8% of people are esti
mated to be affected by ASD, while higher occurrences 
have also been observed (Christensen et al., 2016; Kim et al., 
2011; Jussila et al., 2020). According to recent studies, 
approximately one in 36 children may have ASD, which has 
progressively increased in the past 20 years (Zablotsky et al., 
2017). To date, no proper remedy is available for the core 
symptoms of ASD patients is available (Mostafavi & Gaitanis, 
2020). Although there are considerable differences among 
patients with ASD, the disorder has a unique genetic link 
with a complex inheritance pattern (Lord et al., 2020; 
Veenstra-VanderWeele & Cook, 2004). Recent advances in the 
discovery of genes and genomic locations leading to ASD 
significantly enhance our understanding of the biology and 
major concerns necessary to clarify the pathophysiology of 
ASD (Manoli & State, 2021).

According to their breakthroughs in the regulation of dis
ease molecular networks through multitargets on a system
atic strategy, the pharmaceutical industry has recently 
prioritized omics-based polypharmacology due to the com
plexity of various diseases (Wang et al., 2012). The network 
pharmacological approach has drawn considerable attention 
since it combines system biology and genomics to reveal the 
interconnections between complex biological systems, drugs, 
and diseases (Sharma et al., 2022a; Sharma et al., 2022b). The 
discovery of disease-specific biomarkers and pharmacological 

therapeutic targets has been accelerated by high-throughput 
methods based on ‘-omics’ (Yang et al., 2020). Nowadays, 
high-throughput RNA sequencing has been used more 
extensively than gene expression microarray analysis in bio
logical and drug research due to its shorter detection time 
and cost-effectiveness (Negi et al., 2022; Wang et al., 2009). 
However, the pathogenicity of GBS and ASD is not fully 
understood due to their complexity, and the study of the 
RNA-seq data for them has not been disclosed yet. 
Meanwhile, the link between GBS and ASD remains a mys
tery and no specific therapeutic strategy has developed in 
the last few decades.

Hence, we focused on identifying common differentially 
expressed genes and their subsequent biological pathways to 
explore the mysterious relationship between GBS and ASD. Two 
RNA sequencing datasets, GSE72748 (for GBS) and GSE113834 
(for ASD), collected from GEO NCBI, were evaluated to identify 
differentially expressed genes. Based on common differentially 
expressed genes, the identification of gene ontology and identifi
cation of pathways, PPI analysis, hub genes and essential mod
ules were accomplished. The identification of the hub gene from 
the PPI network was the core part of the study, as it facilitates 
the identification of probable drug candidates. Furthermore, TF- 
DEG interactions and TF-miRNA coregulatory network were also 
constructed to detect relevant transcription factors that regulate 
differentially expressed genes at the transcriptional level. The 
ultimate goal of this research was to find potential drug candi
dates for these two brain disorders. Finally, molecular docking, 
MM-GBSA calculation, density functional theory analysis, molecu
lar dynamics simulation, principal component analysis (PCA), and 
dynamic cross-correlation mapping (DCCM) approaches were uti
lized to validate the potency of drug candidates (Figure 1).

2. Methodology

2.1. Collection of the dataset

We obtained the gene expression datasets for GBS and ASD 
from the GEO-NCBI database to examine the genetic rela
tionship between them (Barrett et al., 2012). The accession 
number for the GBS dataset was GSE72748 (https://www. 
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72748) which 
was obtained from peripheral blood mononuclear cells of a 
Guillain-Barr�e Syndrome patient and her healthy twin 
sampled at three distinct points of disease progression. The 
ASD dataset GSE113834 (https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE113834) focused on comparing the 
expression of histamine-related genes in 13 patients with 
ASD and 39 matched controls. Both datasets use RNA-seq 
data and a high-throughput sequencing method was imple
mented for their expression profiling. For the GSE72748 data
set, the GPL10999 Illumina Genome Analyzer IIx platform 
(Homo sapiens) was used and GPL15207 [PrimeView] 
Affymetrix Human Gene Expression Array platform was used 
for the GSE113834 dataset. Jos�e de la Fuente et al. contrib
uted to the GSE72748 dataset (Doncel-P�erez et al., 2016) and 
the GSE113834 dataset was provided by Parras et al. (2018).
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2.2. Identification of differentially expressed genes and 
common genes between GBS and ASD

The identification of differentially expressed genes (DEGs) is 
the key to determining the genetic connections between 
two diseases. In our study, we used the Bioconductor 
DESeq2 package in R to identify DEGs for GSE72748 and 
GSE113834 (Love et al., 2014). A threshold criterion, pvalue 
<0.05 and absolute log2 fold change (FC) >¼1, was set for 
both datasets to identify the significant DEGs. Both datasets 
were normalized by log2 transformation before starting the 
analysis and the false discovery rate was managed by the 
Benjamini-Hochberg correction method (Benjamini & 
Hochberg, 1995). Finally, using the programming language R, 
we locate the DEGs common to GSE72748 and GSE113834.

2.3. Identification of gene ontology and pathways by 
functional enrichment analysis

An enrichment analysis was carried out to identify gene 
ontological pathways and pathways for common DEGs via 
the web-based platform Enrichr (Kuleshov et al., 2016). Gene 
Ontology (GO) is a magnificent repository of computational 
information on the function of genes and their regulation 
(The Gene Ontology Consortium, 2017). We considered three 
categories, namely biological process, molecular function, 
and cellular component, for a better understanding of Gene 
Ontology (GO) (Doms & Schroeder, 2005). A pathway-based 
analysis maintains a high similarity to Gene Ontology (GO), 
but it offers more precise and detailed information on the 
molecular mechanisms that are responsible for complex dis
eases (Holmans et al., 2009; Tilford & Siemers, 2009; Wang 
et al., 2007). To identify significant pathways, we utilized 
three pathway databases: KEGG (Kanehisa et al., 2012), 
WikiPathways (Slenter et al., 2018), and BioPlanet (Huang 
et al., 2019).

2.4. Analysis of the PPIs network

Every protein is functionally interconnected with the other 
protein in the ribosomal complex (De Las Rivas & Fontanillo, 
2010). Most proteins tend to trigger their functions through 
their interactions, and the retrieved PPI networks play a vital 
role in almost all biological processes (Athanasios et al., 
2017). To build the PPI network of proteins encoded by com
mon DEGs, we used the GeneMANIA database (http://www. 
genemania.org). GeneMANIA is a versatile and user-friendly 
web server for predicting gene functions by evaluating gene 
sets (Warde-Farley et al., 2010). In the PPI network, the pro
teins are represented by nodes, and their interactions are 
indicated by edges. PPI networks were analyzed using the 
Cytoscape app for better analysis and graphical visualization 
(Smoot et al., 2011). Cytoscape is a free software program 
that allows biologists to assess and interpret the interrela
tionship of a set of genes or proteins by visualizing, model
ing, and analyzing molecular and genetic interaction 
networks (Yeung et al., 2008).

2.5. Identification of hub genes and Interpretation of 
essential modules

A hub gene is considered to be the protein in a PPI network 
that interacts with other proteins most frequently. To identify 
the hub genes, CytoHubba (http://apps.cytoscape.org/apps/ 
cytohubba), a Cytoscape plugin, was used in the current 
study. CytoHubba offers 11 topological analysis to identify 
significant nodes in biological networks and has become 
Cytoscape’s most influential hub identification plugin due to 
its strong user-friendly interface (Chin et al., 2014). In add
ition, hub genes produce some highly dense areas in the 
protein-protein interaction network, which can be identified 
as the essential module. We used a Cytoscape plugin, 
Molecular Complex Detection (MCODE), to interpret the 
highly concentrated modules. Modules identified through 

Figure 1. Graphical representation of the current study.
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MCODE further contribute to the identification of potential 
drug candidates (Taz et al., 2021).

2.6. TF-DEGs interactions

We analyzed the associations between Transcription Factors 
(TFs) and common DEGs to identify regulatory biomolecules 
in terms of understanding the regulation of DEGs of interest 
at the transcriptional level. The online database 
NetworkAnalyst was utilized to investigate the TF-DEGs inter
action (Xia et al., 2015). NetworkAnalyst is a powerful web 
server that enables its users to perform meta-analysis and 
differential expression analysis for single or multiple gene 
expression datasets (Xia et al., 2014; Zhou et al., 2019). The 
JASPAR database (https://jaspar.genereg.net/), available in 
NetworkAnalyst, was used for the topological analysis of the 
TF-DEGs interaction network.

2.7. Construction of the TF-miRNA coregulatory network

TF-miRNA coregulatory interactions were obtained from the 
RegNetwork database that helps to identify miRNAs and 
regulatory TFs at the transcriptional and post-transcriptional 
levels (Liu et al., 2015). NetworkAnalyst was used to visualize 
the TF-miRNA network and this platform enables researchers 
to explore big numbers of complex gene datasets for the 
generation of new biological hypotheses (Xia et al., 2015).

2.8. Identification of candidate drugs

The ultimate goal of our current study is the identification of 
drug molecules. We evaluate the common DEGs for GBS and 
ASD through the DSigDB database (Yoo et al., 2015) to iden
tify candidate drugs. Access to the databases was obtained 
from the Enrichr online server. Enrichr is a user-friendly web- 
based platform that offers numerous forms of presentation 
summaries of collaborative gene functions for insightful 
enrichment analysis (Chen et al., 2013).

2.9. Homology modeling of the CXCR3 receptor

Using the Prime module in Schrodinger Maestro Suite 
(Jacobson et al., 2004), we accomplished the homology mod
eling of CXCR3. The UniProt database (https://www.uniprot. 
org/) was utilized to provide the human CXCR3 sequence 
(Accession ID: P49682). Due to the strong sequence resem
blance, we chose the G protein-coupled CXCR2 structure of 
Homo sapiens (PDB ID: 6LFM) as the preferred template for 
homology modeling of human CXCR3 applying NCBI Protein 
BLAST against the PDB database. The alignment between the 
query and the selected template was calculated using the 
ClustalW alignment method. Finally, the knowledge-based 
model building method in Prime was applied to conduct the 
homology modeling. Then, the loop refinement and energy 
minimization of the built structure was performed using the 
OPLS3e force field in Schrodinger Prime. The minimized 
model was then validated using the Ramachandran plot, 
obtained from the PROCHECK web server (Laskowski et al., 
2006).

2.10. Molecular docking and MM-GBSA calculation

Molecular docking is a drug discovery technique that can 
determine the interactions of amino acid residues between 
the target protein and prepared ligands in a conformation 
with the least amount of energy (Ferreira et al., 2015; Hasib 
et al., 2022). Here, we docked the top 10 identified drug mol
ecules with the previously built CXCR3 receptor. The 
PubChem database was used to extract the 3D chemical 
structures of the identified drug molecules in SDF format. 
Then, the LigPrep module available in the Schrodinger Suite 
was used to prepare the ligands while maintaining the ori
ginal state. Energy minimization was performed using the 
OPLS3e force field. The protein structure was prepared by 
the protein preparation wizard on the Maestro panel. During 
the preparation of the protein, hydrogen atoms were added 
and missing loops were also filled. Then, water molecules 
were removed within 3 �Å of het groups and the structure 
was optimized. Finally, the OPLS3e force field was applied to 
minimize the structure of the protein. Further receptor grid 
boxes were generated using the ‘Glide’s Receptor Grid 
Generation’ module at the active site of the receptor. The 
size of the grid box on the X, Y, and Z axis was 10 �Å� 10 
�Å� 10 �Å. Furthermore, we have calculated the MM-GBSA 
scores using the Prime module in Schrodinger Suite to justify 
the results of molecular docking (Campanella et al., 2008). 
Here, the OPLS3e force field and the VSGB 2.0 solvation 
model were utilized to perform the analysis (Roos et al., 
2019; Li et al., 2011).

2.11. Density functional theory analysis for ligand 
optimization

The ligand was subjected to quantum mechanical optimiza
tion (QM) using density functional theory (DFT) calculations 
performed by Jaguar v-10.9 (Bochevarov et al., 2013). The 
DFT analysis employed B3LYP in combination with 6-31 G 
(d,p) basis sets. The ligand with the highest binding affinity 
and the MM-GBSA score was selected for DFT calculation. 
The analysis also focused on evaluating the frontier molecu
lar orbitals, namely, the highest occupied molecular orbitals 
(HOMOs) and lowest unoccupied molecular orbitals (LUMOs), 
as well as their energy gap differences. The chemical hard
ness (g) and softness (S) can be determined using the follow
ing equations:

Hardness ðgÞ ¼ ðI � AÞ=2 (1) 

Softness ðSÞ ¼ 1=g (2) 

In Equation (1), We represent the ionization potential 
(-EHOMO), while A denotes the electron affinity (-ELUMO). 
The lower the hardness value, the higher the reactivity, and 
vice versa. Softness (S) refers to an atom’s ability to receive 
electrons, while g represents hardness.

2.12. Molecular dynamics simulation

A 100 ns molecular dynamics (MD) simulation of the protein- 
ligand complex was performed to evaluate the binding sta
bility of the drug compound to the CXCR3 receptor protein. 
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The Schrodinger Desmond v3.6 program (https://www.schro
dinger.com/), operating in a Linux environment, was 
employed to conduct the MD simulations and investigate 
the thermodynamic consistency of receptor-ligand complexes 
(Biswas et al., 2021). The TIP3P water solvation model was 
used in an orthorhombic simulation cell with periodic 
boundary condition at a separation distance of 10 Å (Harrach 
& Drossel, 2014). To achieve electrical neutralization, counter 
ions were used, and 0.15 M sodium chloride was added to 
simulate physiological conditions with 300K temperature and 
1 atm pressure using NPT ensemble throughout the simula
tion period (Kandeel et al., 2023). The OPLS3e force field, 
available in the Desmond package, was used to minimize 
energy and relaxation of the system (Roos et al., 2019). 
Simulation snapshots were saved after 50 ps intervals. 
Molecular dynamics simulation snapshots were generated 
using the Schr€odinger maestro application v9.5. The accuracy 
of the entire simulation event was assessed using the 
Simulation Interaction Diagram (SID) from the Desmond 
modules within the Schrodinger suite. The stability of the 
protein-ligand complex was ascertained by analyzing several 
factors such as root mean square deviation (RMSD), root 
mean square fluctuation (RMSF), solvent accessible surface 
area (SASA), the radius of gyration (Rg) and intramolecular 
hydrogen bonds values. Using the Bio3D package in R, the 
principal component analysis (PCA) and the dynamic cross- 
correlation matrix (DCCM) were carried out.

2.13. MM-GBSA calculation from the molecular 
dynamics simulation trajectory

The binding free energy of ligands to macromolecules is 
commonly evaluated using the Molecular Mechanics 
Generalized Born Surface Area (MM-GBSA) methods 

(Genheden & Ryde, 2015). In this study, we employed the 
Prime module within the Schrodinger Maestro package to 
analyze the MM-GBSA calculation for the docked complex, 
based on the post-MD Simulations trajectory. The OPLS3e 
force field and the VSGB 2.0 solvation model were utilized to 
estimate the binding free energy. The total free energy bind
ing was determined by the following equation:

dGbind ¼ Gcomplex � ðGprotein þ GligandÞ

Here, dGbind represents the binding free energy, 
Gcomplex denotes the free energy of the complex, Gprotein 
corresponds to the free energy of the target protein, and 
Gligand represents the free energy of the ligand.

3. Results

3.1. Identification of differentially expressed genes and 
common genes between GBS and ASD

A total of 693 DEGs for Guillain-Barr�e syndrome (GBS) was iden
tified from the GSE72748 dataset. Among them, 141 genes 
were up-regulated and 552 genes were down-regulated. The 
GSE102741 dataset was used for autism spectrum disorder 
(ASD) to identify DEGs. A total of 365 DEGs were identified 
where 92 genes were upregulated and 273 genes were down
regulated. Cross-comparison analysis between 693 GBS genes 
and 365 ASD genes was done using the R programming lan
guage. We identified 17 (SNORA21, TNXB, SNORA61, CXCL9, 
CXCL10, HLA-L, CRISP3, TNFRSF12A, C1orf116, LOC100008587, 
PF4, CES1P1, C19orf33, HIST1H3D, LY6G5B, COL11A2, TMEM253) 
common DEGs for GBS and ASD through this approach. The 
overall results were represented by a Venn diagram and it 
revealed that, among the 1058 DEGs, 1.5% of genes are com
mon (Figure 2).

Figure 2. A Venn diagram for the representation of common differentially expressed genes. Among the 693 GBS DEGs and the 365 ASD DEGs, 17 DEGs are identi
cal to both diseases, which is 1.6% of the total DEGs.
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3.2. Identification of gene ontology and pathways by 
functional enrichment analysis

To determine the relationship between different disorders, 
pathway-based research is needed because human diseases 
are interconnected with each other (Podder et al., 2020). We 
identified GO terms and significant signaling pathways for 17 
common DEGs through the Enrichr web tool. For GO terms 
the top three subsections, namely biological process, 
molecular function, and cellular component, were evaluated, 
and for signaling pathway identification, we used Enrichr’s 
KEGG, WikiPathways, and BioPlanet databases. Table 1 repre
sents the top three GO terms (biological process, molecular 
functions, and cellular component) for the DEGs shared by 
GBS and ASD. The positive regulation of cAMP-mediated sig
naling and the regulation of the cAMP metabolic process 
were most profoundly regulated by the common DEGs in 
terms of GO biological process. GO molecular function dis
closed the involvement of CXCR chemokine receptor binding 
and chemokine activity in common DEGs. For the GO cellular 
component, collagen-containing extracellular matrix and 
secretory granule lumen were highly involved in common 
DEGs. The results of KEGG, WikiPathways, and BioPlanet 
pathways are depicted in Table 2. In the case of the KEGG 
and WikiPathway, the chemokine signaling pathway and toll- 
like receptor signaling pathway were identified as the most 
interactive pathways along with the cytokine-cytokine recep
tor interaction and the type II interferon signaling pathway. 
Furthermore, the binding of chemokines to chemokine 
receptors, cytokine-cytokine receptor interaction, and TWEAK 
regulation of gene expression pathway were predominantly 
regulated by the common DEGs during the BioPlanet 

pathway analysis. Here, Figure 3(A) represented the bar 
graph for three GO terms, whereas Figure 3(B) showed the 
bar graph for the KEGG, WikiPathway, and Bioplanet path
way. For each category, only the top 10 relevant pathways 
were identified based on their lower pvalue.

3.3. Analysis of the PPI network

The functional interactions of proteins are predicted through 
the analysis of the PPI network which provides important 
aspects of disease analysis and drug design (Ayub et al., 
2020; Miryala et al., 2018). In the current study, by importing 
all 17 common DEGs into the GeneMANIA database (https:// 
genemania.org/) as input data, we built a PPI network. Then, 
for better visual representation, the GeneMANIA network was 
reformed utilizing the Cytoscape app. The PPI network con
sists of 49 nodes and 781 edges, where each node is a single 
protein, and the protein interconnections are symbolized by 
the edges (Figure 4). This PPI network was later explored to 
detect the hub genes using different topological parameters 
to identify potential therapeutic targets.

3.4. Identification of hub genes and module 
interpretation for predicting therapeutic targets

The hub genes are the genes that exhibited the highest 
degree of connectivity in the principal module (Liu et al., 
2020). Cytohubba plugin (Chen et al., 2009) from Cytoscape 
was used to identify hub genes based on their degree val
ues. The top ten hub genes detected in our current study 
are CCL5, CCL18, CXCL12, CXCL1, CXCL8, CCL2, CCL2, CXCL9, 

Table 1. Top three GO terms and their subsequent GO pathways with p values, combined scores, and corresponding DEGs.

GO terms ID GO pathways p values Combined scores Genes

GO biological process GO:0043950 Positive regulation of cAMP-mediated signaling 2.848E-08 14875.515 CXCL10, CXCL9, PF4
GO:0030814 Regulation of cAMP metabolic process 1.451E-07 6739.106 CXCL10, CXCL9, PF4
GO:1900544 Positive regulation of purine nucleotide metabolic process 1.845E-07 6032.529 CXCL10, CXCL9, PF4
GO:0030801 Positive regulation of cyclic nucleotide metabolic process 2.836E-07 4962.477 CXCL10, CXCL9, PF4
GO:0043949 Regulation of cAMP-mediated signaling 4.129E-07 4193.287 CXCL10, CXCL9, PF4
GO:0030816 Positive regulation of cAMP metabolic process 1.310E-06 2518.932 CXCL10, CXCL9, PF4
GO:0002688 Regulation of leukocyte chemotaxis 2.041E-06 2075.073 CXCL10, CXCL9, PF4
GO:0002687 Positive regulation of leukocyte migration 3.002E-06 1753.749 CXCL10, CXCL9, PF4
GO:0050921 Positive regulation of chemotaxis 8.615E-06 1107.217 CXCL10, CXCL9, PF4
GO:0070098 Chemokine-mediated signaling pathway 1.106E-05 995.444 CXCL10, CXCL9, PF4

GO molecular function GO:0045236 CXCR chemokine receptor binding 3.442E-07 4548.599 CXCL10, CXCL9, PF4
GO:0008009 Chemokine activity 7.569E-06 1171.694 CXCL10, CXCL9, PF4
GO:0042379 Chemokine receptor binding 9.172E-06 1077.273 CXCL10, CXCL9, PF4
GO:0005125 Cytokine activity 2.866E-04 228.055 CXCL10, CXCL9, PF4
GO:0008603 cAMP-dependent protein kinase regulator activity 0.0059356 1066.850 CXCL10
GO:0004771 Sterol esterase activity 0.0076254 760.963 CES1P1
GO:0004806 Triglyceride lipase activity 0.0210470 200.681 CES1P1
GO:0016298 Lipase activity 0.0359419 98.691 CES1P1
GO:0005178 Integrin binding 0.0769945 34.273 TNXB
GO:0052689 Carboxylic ester hydrolase activity 0.0840661 30.164 CES1P1

GO cellular component GO:0062023 Collagen-containing extracellular matrix 0.003796 62.11 TNXB, COL11A2, PF4
GO:0034774 Secretory granule lumen 0.02894 29.59 CRISP3, PF4
GO:1904724 Tertiary granule lumen 0.04575 71.15 CRISP3
GO:0035580 Specific granule lumen 0.05143 60.57 CRISP3
GO:0031093 Platelet alpha granule lumen 0.05547 54.54 PF4
GO:0031091 Platelet alpha granule 0.07384 36.41 PF4
GO:0042581 Specific granule 0.1277 16.04 CRISP3
GO:0070820 Tertiary granule 0.1307 15.47 CRISP3
GO:0070013 Intracellular organelle lumen 0.1608 5.51 CRISP3, COL11A2
GO:0005788 Endoplasmic reticulum lumen 0.2166 6.63 COL11A2
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Table 2. Top 10 KEGG, WikiPathway, and BioPlanet pathways with their corresponding p values, combined scores, and interacting DEGs.

Terms Pathways p values Combined scores Genes

KEGG Cytokine-cytokine receptor interaction 9.36E-05 193.823 CXCL10, CXCL9, TNFRSF12A, PF4
Chemokine signaling pathway 5.20E-04 171.524 CXCL10, CXCL9, PF4
Toll-like receptor signaling pathway 0.003 147.252 CXCL10, CXCL9
Cytosolic DNA-sensing pathway 0.052 59.279 CXCL10
RIG-I-like receptor signaling pathway 0.058 51.396 CXCL10
ECM-receptor interaction 0.067 41.399 TNXB
Protein digestion and absorption 0.074 36.406 COL11A2
IL-17 signaling pathway 0.076 34.787 CXCL10
TNF signaling pathway 0.090 27.500 CXCL10
Systemic lupus erythematosus 0.107 20.982 HIST1H3D

WikiPathway Chemokine signaling pathway 3.38E-04 210.839 CXCL10, CXCL9, PF4
Type II interferon signaling 4.45E-04 586.461 CXCL10, CXCL9
Toll-like Receptor Signaling Pathway 0.003 149.214 CXCL10, CXCL9
Regulation of toll-like receptor signaling pathway 0.006 98.524 CXCL10, CXCL9
Platelet-mediated interactions with vascular and circulating cells 0.014 330.974 PF4
miRNA targets in ECM and membrane receptors 0.019 236.908 TNXB
Hippo-Yap signaling pathway 0.019 223.630 CXCL10
Focal Adhesion-PI3K-Akt-mTOR-signaling pathway 0.027 31.562 TNXB, COL11A2
The effect of progerin on the involved genes in Hutchinson-Gilford 

Progeria Syndrome
0.031 120.296 HIST1H3D

Fibrin Complement Receptor 3 Signaling Pathway 0.031 120.296 CXCL10
BioPlanet Binding of chemokines to chemokine receptors 1.23E-05 946.732 CXCL10, CXCL9, PF4

Cytokine-cytokine receptor interaction 6.26E-05 225.034 CXCL10, CXCL9, TNFRSF12A, PF4
TWEAK regulation of gene expression 2.36E-04 889.102 CXCL10, TNFRSF12A
Chemokine signaling pathway 5.12E-04 172.806 CXCL10, CXCL9, PF4
Peptide G-protein coupled receptors 5.36E-04 169.007 CXCL10, CXCL9, PF4
G alpha (i) signaling events 5.95E-04 160.657 CXCL10, CXCL9, PF4
Type II interferon signaling (interferon-gamma) 8.13E-04 393.962 CXCL10, CXCL9
ECM-receptor interaction 0.002 196.926 TNXB, COL11A2
Thymic stromal lymphopoietin (TSLP) pathway 0.003 179.351 CXCL10, CXCL9
GPCR ligand binding 0.005 55.255 CXCL10, CXCL9, PF4

Figure 3. (A) the bar graph for three gene ontological subsections, biological process (i), molecular function (ii), and cellular component (iii). (B) The bar graph for 
(i) KEGG, (ii) WikiPathway, and (iii) BioPlanet. The top 10 pathways for each term were identified based on their lower pvalue.
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CXCL10, CXCL2, and CCL3. The protein-protein interaction 
network for hub proteins and other correlated proteins was 
demonstrated in Figure 5. The interacting network has 39 
nodes and 522 edges. These identified hub genes may be 
used as potential drugs in the future.

Furthermore, the results of different topological parame
ters for hub genes are shown in Table 3. Next, the highly 
connected module analysis was done using another 

Cytoscape plugin named MCODE. The functional module 
derived from the PPI network plays an important role In con
trolling a specific cellular process (Li et al., 2012). In our 
study, the module analysis network contains 32 nodes and 
671 edges, demonstrating that common DEGs CXCL9, 
CXCL10, and PF4 were highly interconnected in the dense 
module network (Figure 6).

3.5. TF-gene interactions

In cellular processes, TFs play a pivotal role and control gene 
expression in all living organisms at the transcriptional level 
(Cheng et al., 2012). We analyzed TF-gene interactions for 
the common DEGs through the NetworkAnalyst online data
base. The TFs-DEGs network was shown in Figure 7, which 
revealed that the network comprises 87 nodes and 138 
edges, of which 72 TF-genes were found. In this network, 
each TF-gene regulates at least one common differentially 
expressed gene, among them, TNXB was regulated by the 
highest number of TF-genes (57 TF-genes).

Figure 4. The protein-protein interaction network for common DEGs. The network consists of 49 nodes and 781 edges. Each node represents the differentially 
expressed genes, and the edges indicate the link between the genes. The nodes in cyan specify the common differentially expressed genes.

Figure 5. Identification of hub genes from the protein-protein interaction net
work. The network contains 39 nodes and 522 edges where the highlighted 
nodes indicate the hub genes. In this interactive network, CCL5 exhibited the 
highest degree value of 66.

Table 3. Topological parameters including degree, closeness centrality, eccen
tricity, and clustering coefficient for 10 hub genes.

Hub genes Degree Closeness centrality Eccentricity Clustering coefficient

CCL5 66 38.66667 0.33333 0.30583
CCL18 62 39.33333 0.33333 0.35272
CXCL12 60 40.83333 0.33333 0.38588
CXCL1 59 39.16667 0.33333 0.39158
CXCL8 58 38.66667 0.33333 0.40169
CCL2 58 39.83333 0.33333 0.40653
CXCL9 54 38.66667 0.33333 0.46681
CXCL10 52 39.16667 0.33333 0.50679
CXCL2 52 40.83333 0.33333 0.51735
CCL3 52 39.16667 0.33333 0.51056
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3.6. TF-miRNA coregulatory network

miRNAs are short, single-stranded noncoding RNAs that par
ticipated in the regulation of gene expression at the post- 
transcriptional level (Cao et al., 2016). miRNAs have a pivotal 
role as a biological regulator in neurodegenerative disorders 
such as neuronal differentiation, neurogenesis, and synaptic 
plasticity (Rahman et al., 2020). Therefore, using 

NetworkAnalyst, we constructed the TF-miRNA coregulatory 
network to obtain detailed information on these regulatory 
biomolecules that regulate our common DEGs. The TF- 
miRNA coregulatory network contains 177 nodes and 218 
edges, of which 85 miRNAs and 79 TF-genes were identified. 
These identified TF-genes and miRNAs highly interacted with 
our common DEGs (Figure 8).

3.7. Identification of candidate drugs

Based on the lower pvalue and adjusted pvalue, the top 10 
drug molecules for 17 common DEGs were identified from 
the DSigDB database of the Enrichr web server. The drug 
candidates that had a lower pvalue and adjusted pvalue, and 
linked with the hub genes CXCL9 and CXCL10 were consid
ered for further evaluation. According to our experiment, 
these two hub genes were identified as dense modules and 
were closely related to each analysis of the study. Therefore, 
these two common nodes were emphasized over the other 
DEGs to identify candidate drugs.

The result obtained from the database revealed that 
Gadodiamide hydrate CTD 00002623 and Imatinib CTD 
00003267 exhibited lower pvalue and adjusted pvalue com
pared to the rest of the drug candidates. Most drug candi
dates including these two molecules were found to be 
associated with CXCL9 and CXCL10 in the following study. 
Table 4 represents the top 10 drug candidates detected from 
DSigDB.

Figure 7. The TF-gene interaction network. This network has 87 nodes and 138 edges where 72 genes were determined as TF-genes. The nodes in maroon color 
indicate the common differentially expressed genes.

Figure 6. Essential module interpretation network generated from the PPI net
work. This network contains 32 nodes and 671 edges in which CXCL9, CXCL10, 
and PF4 were marked pink because these three hub genes are common in 
both the GBS and ASD datasets.
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3.8. Protein modeling, molecular docking, and 
MM-GBSA analysis

The homology modeling, refinement, and energy minimization 
of the 3D structure of CXCR3 receptor protein (Figure 9(A)) 
was carried out by the Prime module of the Schrodinger 
Suite (paid version). Structural validation of the built protein 
was performed by the Ramachandran plot. The modeled 
protein had 368 amino acid residues, where 91.8% of the 
residues fall into the most favoured regions (residues in the 
red zone of Figure 9(B-i)). Almost similar results have been 
observed when the ligand imatinib binds to the CXCR3 
receptor (Figure 9(B-ii)). 90.03% of the residues were present 
in the most favoured regions in the case of receptor-ligand 
binding.

The energy of the ligand-receptor binding was then calcu
lated by the molecular docking approach as it is most 

extensively utilized in drug discovery to interpret the ligand- 
target interaction and identify possible therapeutic target 
compounds (Pinzi & Rastelli, 2019). In our study, we docked 
the top 10 drug molecules that were identified from the 
DSigDB database to gain more information on their inter
action with the CXCR3 receptor.

The results revealed that imatinib exhibited the highest bind
ing affinity of −7.338 kcal/mol. Imatinib interacted with A: TYR- 
270 by forming a hydrogen bond and with A: PHE-46,130 by a 
pi-pi stacking bond (Figure 10). in addition, imatinib interacted 
with A: GLU-292 through a salt-bridge bond and formed a pi-cat
ion bond to interact with A: LYS-299 (Figure 10). to validate the 
results of molecular docking analysis, we calculated the MM- 
GBSA values of the top 10 drug molecules. Complying the 
molecular docking, imatinib exhibited the highest MM-GBSA 
score of −68.27 kcal/mol. Table 5 represents the binding affinity 
and MM-GBSA scores for the top 10 drug molecules. Thereafter, 

Figure 8. Representation of the TF-miRNA coregulatory network. The network holds 177 nodes and 218 edges in which 85 miRNAs and 79 TF-genes were present. 
The nodes in the cyan color represent the common DEGs, the nodes in the maroon color are miRNAs, and the purple nodes specify the TF-genes.

Table 4. Top 10 suggested drug molecules for GBS and ASD with their pvalue, adjusted pvalue, and interacting DEGs.

Drug candidates p value Adjusted p value Interacting genes

Gadodiamide hydrate CTD 00002623 6.02E-04 0.20049641 CXCL10, CXCL9
Imatinib CTD 00003267 0.003527 0.20049641 CXCL10, CXCL9
Cicloheximide PC3 UP 0.00374 0.20049641 C1ORF116, TNFRSF12A, HIST1H3D
Thapsigargin PC3 UP 0.007439 0.20049641 C1ORF116, TNFRSF12A, HIST1H3D
Irinotecan PC3 UP 0.008179 0.20049641 C1ORF116, SNORA21, HIST1H3D
Lycorine PC3 UP 0.008496 0.20049641 C1ORF116, TNFRSF12A, HIST1H3D
3-Nitrofluoranthene CTD 00001617 0.010155 0.20049641 CXCL10
Roxarsone CTD 00006708 0.010997 0.20049641 CXCL9
Roflumilast CTD 00003916 0.010997 0.20049641 CXCL10
Rolipram CTD 00007371 0.012679 0.20049641 CXCL10
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imatinib was finally evaluated through DFT, molecular dynamics 
simulation, PCA, DCCM, and MM-GBSA calculations as the top
most drug candidate

3.9. Ligand optimization by density functional theory

Frontier molecular orbitals, namely the Highest Occupied 
Molecular Orbital (HOMO) and Lowest Unoccupied Molecular 
Orbital (LUMO), are of paramount significance in characteriz
ing the reactivity and stability of ligand-receptor interactions 
for chemical species (Jana & Singh, 2019). In this study, we 
employed density functional theory (DFT) to computationally 
determine the orbital energies of imatinib. According to the 
DFT results, the HOMO and LUMO energy scores were 
−0.200 and −0.052 a.u, where the energy gap (HLG) was 

0.148 eV (Figure 11). Furthermore, the hardness and softness 
energy of imatinib was 0.074 and 13.514 eV. Table 6 shows 
the results of the DFT calculation for imatinib.

3.10. Molecular dynamics simulation

The molecular dynamics study was conducted to analyze the 
structural variations and rigidity of the docked complex in a 
simulating environment. The root mean square deviations of 
the C-alpha atoms of the simulating systems were illustrated 
in Figure 12 where the Apo (CXCR3 receptor protein) and 
the docked complex (imatinib-CXCR3) had an initial increase 
in RMSD due to the flexible behavior of the complex. Both 
protein systems were stabilized after 20 ns and maintained a 
lower degree of the deviations till the whole simulations 

Figure 9. (A) the 3D Crystallographic structure of the CXCR3 protein. (B) Ramachandran plot demonstrating various sections of the structure of the CXCR3 receptor 
protein (i) and CXCR3-imatinib complex (ii). Here, the red-marked area indicates the most favoured regions for the residues, the yellow zone denotes the additional 
allowed regions, and the glycine residues are plotted as triangles.
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times. The RMSD profile of both systems did not exceed 3 Å, 
defining the stable nature of the complex.

The root mean square fluctuation of protein systems is a 
benchmark that defines flexibility across the regions (Hasib 
et al., 2022). Figure 13 indicates that the RMSF value of the 
CXCR3 protein and the imatinib-CXCR3 complex was lower 
than 2.5 Å which denotes the conformational stability of 
both complexes. The CXCR3-imatinib complex showed less 
fluctuation during simulation compared to Apo (CXCR3 
receptor). The majority of the variation occurred at the 
beginning and end of the MD simulation as the N- and C-ter
minal domains were present.

Moreover, the solvent accessible surface area is a key 
determinant of protein stability. The higher SASA indicates 
an expansion in the protein structure, whereas the lower 
SASA defines the truncated nature of the complexes. 
Figure 14 showed that the protein complex had an initial 
rise in SASA at the start of the simulation but reached stable 
states after 40 ns. The CXCR3-imatinib complex maintained a 
stable profile during the rest of the simulation periods, which 
correlates with the compactness of the system.

Similarly, the compactness of protein is determined by the 
radius of gyration (Rg). The Rg value defines the distribution of 
atoms across a protein-ligand complex. The lower radius of gyr
ation indicates tight packing of protein in a simulating system 
(Lobanov et al., 2008). In the Rg analysis, the CXCR3-imatinib 
complex exhibited almost a flat line throughout the simulation, 
indicating the structural compactness of the system (Figure 15).

In addition, the intramolecular interaction formed by differ
ent bonds between the CXCR3 receptor and imatinib was ana
lyzed. The intramolecular hydrogen bond of the complex 
defines the stability and rigidity of the protein system. 
Figure 16 indicates that imatinib interacted with CXCR3 by 
forming several bonds, such as the hydrogen, hydrophobic, 
ionic, and water bridges, and maintained these contacts 
throughout the simulation period. In addition, we have calcu
lated the PSA and molSA values for the CXCR3-imatinib com
plex where the complex showed stability during simulation 
(See Supplementary File 3)

Principal component analysis (PCA) has been widely used to 
analyze the dynamic behavior of proteins (David & Jacobs, 2014). 
It enables the identification of collective motions exhibited by 
protein trajectories during molecular dynamics (MD) simulations. 
In our study, we employed PCA to analyze the CXCR3-imatinib 
complex system (Figure 17(A)), plotting the eigenvalues against 
their corresponding eigenvector indices for the first 20 modes of 
motion. These eigenvalues represent fluctuations in the protein’s 
eigenvectors within hyperspace. In particular, the overall move
ment of the proteins in our simulations is primarily governed by 
eigenvectors with higher eigenvalues. Among the first five eigen
vectors, which displayed dominant movements, eigenvalues 
ranging from 18.3% to 80.2% were observed, while the remain
ing eigenvectors exhibited lower eigenvalues.

To capture the majority of total variations, we focused on 
the first three principal components, PC1, PC2, and PC3, 

Figure 10. The molecular interaction between imatinib and the CXCR3 chemokine receptor through molecular docking study.

Table 5. The top 10 drug molecules with their binding affinity and MM-GBSA scores (Kcal/mol) with the CXCR3 receptor.

Drug molecules Binding affinity (kcal/mol) MM-GBSA scores (dGbind) (kcal/mol)

Imatinib −7.338 −68.27
Lycorine −7.092 −45.93
3-Nitrofluoranthene −6.702 −44.32
Cicloheximide −6.061 −43.45
Irinotecan −5.592 −55.56
Rolipram −5.465 −40.67
Roflumilast −5.129 −35.27
Gadodiamide hydrate −4.683 −19.73
Roxarsone −3.732 −20.69
Thapsigargin −1.585 −48.10
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which collectively accounted for over 40% of the total vari
ability. Analyzing Figure 17(A), we observed that PC1 demon
strated the highest variability, accounting for 18.26% of the 
overall motion, followed by PC2 with a variability of 13.02%. 
On the contrary, PC3 exhibited minimal variability at 11.54%. 
This reduced variability indicates that PC3 corresponds to 
a stabilized protein-ligand binding state, occupies a relatively 
confined region in phase space and adopts a compact struc
ture compared to PC1 and PC2. Using simple clustering 
within the PC subspace, our PCA analysis successfully uncov
ered conformational changes across all clusters. Blue regions 
exhibited the most significant movement, white regions dem
onstrated intermediate movement, while red regions sug
gested reduced flexibility and movement.

Furthermore, the pairwise correlation map, depicted in 
Figure 17(B), provided insights into the relationship between 
imatinib and the CXCR3 protein. The map displayed pairwise 
cross-correlation coefficients, with values above 0.8 repre
senting strong positive correlations and highlighted in cyan. 
Conversely, residues with anticorrelated behavior, indicated 
by values below −0.4, were marked in purple. The high per
centage of pairwise-correlated residues signifies a stable 
binding between the CXCR3 receptor protein and imatinib, 
thus confirming their strong interaction.

3.11. Binding free energy calculation

The MM-GBSA approach is commonly employed for assess
ing the binding free energy between protein molecules and 
ligands. In this study, we investigated the impact of various 
non-bonded interaction energies on the binding free energy 
of the CXCR3-imatinib complex. Our findings revealed that 
the binding free energy of imatinib to CXCR3 was deter
mined to be −83.66 kcal/mol (Figure 18). Among the 

Figure 11. Structure of imatinib with the HUMO and LUMO energy score. HLG 
represents the energy gap between HUMO and LUMO.

Table 6. Density functional theory calculation result of imatinib after molecular docking and MM-GBSA analysis.

Compound name PubChem ID eHOMO (a.u) eLUMO (a.u) HLG (eV) (Hardness (eV) Softness (eV)

Imatinib CID-5291 −0.200 −0.052 0.148 0.074 13.514

Figure 12. Molecular dynamics simulation trajectory analysis to determine the conformational stability of CXCR3 after the binding of imatinib through the calcula
tion of RMSD values.
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Figure 13. Determination of the RMSF value for the protein C atoms in the docked CXCR3-imatinib complex.

Figure 14. Calculation of the solvent accessible surface area (SASA) value for the selected ligand and CXCR3 receptor using 100 ns simulation.

Figure 15. Radius of gyration (Rg) analysis for the CXCR3-imatinib complex by employing 100 ns molecular dynamics simulation.
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Figure 16. The stacked bar graphs represent the intramolecular interactions between the CXCR3 receptor protein and imatinib.

Figure 17. (A) Principal component analysis for the CXCR3-imatinib complex. Here, the eigenvalue was plotted against the proportion of variance (%). three PCs 
represent the areas of fluctuations. The variations in PC1, PC2, and PC3 were 18.26%, 13.02%, and 11.54%, respectively. The overall rate of variation was 42.82%. 
(B) The dynamic cross-correlation mapping of the CXCR3-imatinib complex exhibits positive and negative correlations among the constituent residues. The positive 
correlation between residues is denoted by cyan color and the negative correlation is indicated by purple color.

Figure 18. Representation of the average binding free MM-GBSA energy and other energy parameters for the CXCR3-imatinib complex.
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different types of interactions, the GbindvdW, GbindLipo, 
GbindCoulomb, and GbindSolvGB energies exerted the most 
significant influence on the average binding energy. 
Conversely, the contribution of the GbindCovalent energy to 
the overall binding energy was found to be minimal. 
Furthermore, the interaction analysis based on GbindHbond 
values demonstrated the formation of stable hydrogen 
bonds between the CXCR3-imatinib complex. Table 7
showed the binding free energy and other non-bonded 
interaction energies for the CXCR3-imatinib complex.

4. Discussion

The majority of cases of impairment are triggered by neuro
logical disorders, which are also the second leading cause of 
death worldwide. Especially in low and middle-income coun
tries, the actual numbers of deaths and individuals with dis
abilities caused by neurological disorders have increased 
significantly in the last 30 years (Feigin et al., 2020). Many 
nervous system disorders are minimally responsive to exist
ing treatments, but are potential candidates for gene ther
apy, an approach that can correct the genetic abnormalities 
contributing to its pathogenesis at the molecular level 
(Choong et al., 2016). Keeping this part in memory, we ana
lyzed the differential gene expression pattern for two signifi
cant neurological disorders, namely Guillain-Barr�e syndrome 
(GBS) and autism spectrum disorder (ASD), to identify poten
tial candidate biomarkers for therapeutic purposes. Guillain- 
Barr�e syndrome (GBS) is an autoimmune disorder that affects 
the peripheral nervous system and is associated with a wide 
range of comorbidities, including rapidly evolving muscle 
weakness, a lack of myotatic reflexes, moderate sensory loss, 
and areflexia (Dimachkie & Barohn, 2013; Wang et al., 2016). 
Besides, autism spectrum disorder is also a neurological dis
order characterized by persistent deficits in social communi
cation and interactions (Brown et al., 2017; Cryan et al., 
2020). Despite having great clinical value, the interconnec
tion between GBS and ASD remains a mystery. Hence, we 
have used several bioinformatics approaches to evaluate the 
expression patterns of significant DEGs and their pathways 
related to GBS and ASD, which can be impactful therapeutic 
targets for these two disorders. The remaining study was 
completed with the analysis of PPIs, hub genes identification 
and module interpretation, TF-gene interactions, TF-miRNA 
coregulatory network, and candidate drug detection. 
Furthermore, we performed molecular docking, MM-GBSA, 
DFT, molecular dynamics simulation, PCA, and DCCM 
approaches to interpret the potency of the identified drug 
candidates.

We studied two RNA-seq gene expression datasets 
(GSE72748 and GSE113834) from GEO-NCBI and detected 
693 and 365 DEGs respectively. To predict the connections 
and probable drug compounds for GBS and ASD, 17 com
mon DEGs were identified. Following that, related GO terms 
and pathways were identified according to the lower pvalue 
using these 17 DEGs. In terms of GO biological processes, 
positive regulation of cAMP-mediated signaling, regulation of 
cAMP metabolic process, positive regulation of purine 
nucleotide, and positive regulation of cyclic nucleotide are 
the topmost GO terms. One of the most vital elements for 
neuronal expansion, plasticity, and regeneration is cAMP. 
Members of the cAMP-dependent second-messenger path
ways have a role in cellular proliferation and differentiation, 
as well as embryonic development, especially neurodevelop
ment (Blaschke et al., 2000). Notably, protein kinase A (PKA) 
is triggered by cAMP, and various studies have suggested 
that proteins involved in the PKA pathway may be linked to 
autism (Ji et al., 2011). Also, in a previous study, it was 
claimed that, for therapeutic interventions, molecular compo
nents that participate in cAMP-mediated signaling pathways 
can serve as appealing drug targets due to their contribution 
as a second messenger in the central nervous system (Lee, 
2015).

The top GO terms for molecular function are CXCR che
mokine receptor binding, chemokine activity, chemokine 
receptor binding, and cytokine activity. MIF (Macrophage 
migration inhibitory factor) signaling is activated after bind
ing of the chemokine receptors, CXCR2, CXCR4, and CXCR7 
(Jankauskas et al., 2019). MIF has been studied as a neuroen
docrine mediator and plays a pro-inflammatory role in vari
ous immunoinflammatory and autoimmune conditions such 
as type 1 diabetes, multiple sclerosis, Guillain-Barr�e syn
drome, and different types of cancers, including neuroblast
oma (Benedek et al., 2017; Cavalli et al., 2019; Cvetkovic 
et al., 2005; Fagone et al., 2018; Kasama et al., 2010; Leyton- 
Jaimes et al., 2018; Mangano et al., 2018; Nicoletti et al., 
2005; Presti et al., 2018; Soumoy et al., 2019). The synthesis 
of CXCRs was found to change in ASD patients in several 
investigations. The gene expression of the CXCR2, CXCR3, 
CXCR5 and CXCR7 receptors was found to be higher in 
patients with ASD (Ahmad et al., 2018). Furthermore, the top 
GO terms according to the cellular component are collagen- 
containing extracellular matrix, secretory granule lumen, and 
tertiary granule lumen. To date, no evidence of these cellular 
components playing a role in GBS or ASD has been reported.

The relevant KEGG, WikiPathways, and Bioplanet pathways 
for GBS and ASD were then determined. The research was 
carried out using common DEGs to uncover pathways that 
were identical in both GBS and ASD. Viral protein interaction 
with cytokine and cytokine receptor, Cytokine-cytokine 
receptor interaction, and chemokine signaling pathway are 
the major KEGG pathways identified in the current study. 
Chemokines appear to be a special type of neurotransmitter 
that control a wide range of biological processes, including 
neural development, neuroinflammation, and synaptic trans
mission (Rost�ene et al., 2011). Chemokine receptor signaling 
elements may offer novel therapeutic options for children 

Table 7. The average MM-GBSA binding free energy calculation of imatinib 
with CXCR3 from post molecular dynamics simulation trajectories.

Parameters Energies (Kcal/mol)

dGbind −83.66
dGbindCoulomb −41.84
dGbindCovalent 6.50
dGbindHbond −2.71
dGbindLipo −33.59
dGbindSolvGB 57.86
dGbindvdW −70.74
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with autism spectrum disorder and other neurological 
impairments because the chemokine signaling pathway has 
been reported to be involved in the peripheral and central 
nervous system (Ahmad et al., 2018; Ubogu, 2013). 
Meanwhile, the chemokine signaling pathway, type II inter
feron signaling, and toll-like receptor signaling pathway were 
identified as top WikiPathways. Type II interferon (IFNc) con
tributes to neurodegeneration in a variety of CNS disorders; 
however, its particular role in CNS inflammation is not fully 
understood (Kulkarni et al., 2016). In earlier investigations, 
toll-like receptors are involved in several diseases of the cen
tral nervous system, such as Alzheimer’s and multiple scler
osis (Carty & Bowie, 2011). In the BioPlanet pathway analysis, 
binding of chemokines to chemokine receptors, cytokine- 
cytokine receptor interaction, TWEAK regulation of gene 
expression, and chemokine signaling pathway were found to 
be the supreme pathways. According to recent studies, sup
pression of TWEAK expression in the CNS has therapeutic 
benefits in patients with multiple sclerosis and ischemic 
stroke (Nagy et al., 2021).

The most important part of the investigation is the con
struction and exploration of the PPIs network, which is inte
gral for hub gene identification, module analysis, and 
probable drug prediction. The 17 common DEGs underwent 
the PPI analysis to build the network. The PPI network desig
nated CCL5, CCL18, CXCL12, CXCL1, CXCL8, CCL2, CXCL9, 
CXCL10, CXCL2, and CCL3 genes as hub genes due to their 
high interaction rate. Furthermore, essential modules based 
on the PPI network were also identified because these dense 
areas reveal valuable insights into the molecular nature of 
different types of disorders (Vlaic et al., 2018). Among the 
common DEGs, CXCL9, CXCL10 and PF4 were found in the 
module analysis, while the CXCL9 and CXCL10 genes are also 
the identified hub genes. Previously, CXCL10 was elevated in 
the CSF of patients with GBS or CIDP, while a reduced con
centration of CXCL9 and CXCL10 was also reported in other 
studies. These previous findings validate the relevance of the 
current study.

Following that, we also identified some transcriptional fac
tors that are essential for the functions of these common 
DEGs. The pathogenicity of various human diseases like neu
rodegenerative disorders and ischemic damage is related to 
the uncontrolled expression of these transcriptional regula
tors (Kane & Citron, 2009). Likewise, transcriptional factors 
contribute to a variety of biological processes, and the 
abnormal activity of these TFs may be promising therapeutic 
targets (Papavassiliou & Papavassiliou, 2016). In the TF-gene 
interaction network, TNXB was regulated by the highest 
number of TF-genes with a degree value of 57. Here, CXCL10 
and CXCL9 also exhibited a notable interaction. The degree 
values of CXCL10 and CXCL9 were 9 and 6, respectively, in 
our TF-gene network. Evidence from the literature reveals 
that, under physiological and pathological conditions, CXCL9, 
CXCL10, and CXCL11, together with their receptors, play a 
pivotal role in the central nervous system (Koper et al., 
2018).

Furthermore, the coregulatory network of miRNAs and TFs 
was constructed, as these regulatory molecules act as 

potential biomarkers in different complex disorders. To date, 
an increasing number of miRNAs have been shown to be 
critical for the pathogenesis of neurological diseases 
(Nudelman et al., 2010). The expression of miRNAs is altered 
in conjunction with the onset and progression of disorders 
in the central nervous system. Therefore, miRNA-mediated 
regulation could play a significant role in the initiation and 
progression of neurological disorders and may serve as a 
new biomarker (Wang et al., 2014). A total of 85 miRNAs 
were identified in this study. Among miRNAs, miR-135, miR- 
135b, and miR-186 were connected to CXCL9 and CXCL10 in 
the coregulatory network and were found to have roles in 
neurological disorders in earlier studies (Che et al., 2014; 
Samadian et al., 2021; Yang et al., 2018). Both miR-135, miR- 
135b, and miR-186 previously showed a negative regulatory 
effect on the expression and activity of BACE-1 and thus play 
a significant role in the progression of Alzheimer’s disease 
because BACE-1 is a key drug target for AD (Kim et al., 2016; 
Liu et al., 2014; Zhang et al., 2016). miR-135b played a pro
tective role in Parkinson’s disease by inhibiting pyroptosis by 
targeting FoxO1 (Zeng et al., 2019). Although the direct con
nection between the identified miRNAs and GBS or ASD is 
not proven yet but their role in other neurological disorders 
denotes their ability to work as potential biomarkers in GBS 
and ASD.

Next, probable drug candidates for GBS and ASD were 
identified from the DSigDB database utilizing the 17 com
mon DEGs. Here, we highlighted the top 10 drug candidates 
(Table 4) where gadodiamide hydrate CTD 00002623, imati
nib CTD 00003267, and cicloheximide PC3 UP were identified 
as the top candidates based on their lower pvalue.

Then, the top 10 drug candidates went through molecular 
docking analysis to dictate their efficacy. Candidates were 
docked with the chemokine receptor CXCR3. The chemokine 
receptor CXCR3 is activated by the chemokines CXCL9, 
CXCL10, and CXCL11 (Andrews & Cox, 2016; Schmidt et al., 
2015), and previous studies have shown that CXCL9, 10, and 
11 all bind to CXCR3 (Campanella et al., 2008; M€uller et al., 
2010). In this study, both CXCL9 and CXCL10 were identified 
as hub gene and essential module, and also most of the 
drug molecules interacted with them. Hence, we choose the 
CXCR3 receptor to implement the molecular docking analysis 
with the candidate drug molecules. Imatinib exhibited the 
highest binding affinity score of −7.338 kcal/mol in the 
molecular docking study. Imatinib interacted with the amino 
acid residues TYR-270, PHE-46,130, GLU-292 and LYS-299 of 
the CXCR3 protein by forming different types of bonds. 
Although there is no information in the literature linking 
these amino acid residues directly with GBS and ASD, the 
relevance of this research is indicated by their roles in neuro
transmission and neuroprotection (Cheng et al., 2020; Crupi 
et al., 2019; Kolacheva et al., 2022). In addition, we calculated 
the MM-GBSA score to predict the binding free energy of 
the docked complexes where imatinib showed the highest 
dGbind score of −68.27 kcal/mol. Studies have shown the 
role of imatinib in modulating the pathophysiological state 
of a number of disorders affecting the brain and spinal cord, 
such as Alzheimer’s disease, Parkinson’s disease, stroke, 
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multiple sclerosis, and spinal cord injury (Kumar et al., 2019). 
The density functional theory calculation was also employed 
as it determine the pharmacological properties of small mol
ecules (Bouback et al., 2021). We calculated the HOMO, 
LUMO, and their energy gap values. A greater energy differ
ence is always expected for small compounds to become 
bioactive (Zhan et al., 2003). In this study, the HOMO-LUMO 
values and the energy gap between them indicate the bio
active properties of imatinib.

To further our investigation, we conducted molecular 
dynamics (MD) simulations to ascertain the structural stabil
ity of the imatinib-CXCR3 receptor complex. The root mean 
square deviation (RMSD) and root mean square fluctuation 
(RMSF) values of the complex remained below 3 Å, indicat
ing the stability of the complex. Furthermore, the complex 
demonstrated a consistent conformation in terms of radius 
of gyration (Rg), solvent accessible surface area (SASA), and 
intramolecular interaction bond analysis. Over the course of 
the 100 ns simulations, the CXCR3-imatinib complex exhib
ited minimal fluctuations, confirming the compactness of 
the system. The reliability of the MD simulations was fur
ther corroborated by employing principal component ana
lysis (PCA) and dynamic cross-correlation map (DCCM) 
analysis. PCA results revealed limited variations, while 
DCCM analysis exhibited a strong correlation between 
CXCR3 and imatinib, affirming the validity of MD simula
tions. Finally, the determination of the binding free energy 
(MM-GBSA) was carried out based on the analysis of post 
MD simulation trajectories. Notably, a substantial increase in 
net negative binding free energy (-83.66 kcal/mol) was 
observed following the simulation of the CXCR3-imatinib 
complex. This observed enhancement in binding free 
energy serves as compelling evidence, highlighting the con
gruence between the binding free energy derived from 
molecular docking data and the MM-GBSA values obtained 
from the MD simulation trajectories.

In summary, the current study attempted to uncover the 
interconnection between GBS and ASD through different bio
informatic approaches. Identified pathways and gene onto
logical pathways using common DEGs were found to interact 
with hub genes, especially with CXCL9 and CXCL10. CXCL9 
and CXCL10 were prioritized over the other hub genes due 
to their presence in the module analysis and their roles in 
various neurological disorders according to earlier studies. 
Furthermore, identified TFs and miRNAs that are connected 
to CXCL9 and CXCL10 were previously found to have roles in 
brain disorders. Among the drug molecules, imatinib exhib
ited the best binding affinity and MM-GBSA score with the 
CXCR3 receptor and remained stable throughout the simula
tion process. Imatinib interacted with the hub genes CXCL9 
and CXCL10 in the drug candidate identification process via 
the DSigDB database. The findings of this network-based 
study demonstrated a discernible correlation between the 
hub genes CXCL9 and CXCL10 and all observed outcomes, 
thereby establishing the relevance of this research endeavor. 
Hopefully, the biomarkers identified in this study may pro
vide significant insights into the pathophysiology of GBS and 
ASD, and the identified drug molecules may show a 

treatment path for these two brain disorders. At the same 
time, this study does not have clinical validation. Therefore, 
further laboratory-based research is highly recommended for 
clinical validation.

5. Conclusion

Despite recent advancement of science and biological 
research, the definite link between GBS and ASD has not 
established yet. Hence we evaluated the differential expres
sion pattern of genes from two RNA-seq data to discover 
potential biomarkers and drug candidates for GBS and ASD. 
The present study identified several relevant pathways, such 
as the cAMP-mediated signaling pathway, the chemokine 
signaling pathway, and the toll-like receptor signaling path
way, that had been somewhat related to neurological disor
ders before. A total of ten hub genes were identified in the 
current investigation, where CXCL9 and CXCL10 were also 
found in the module analysis. The rest of the analysis was 
performed by predicting the subsequent TFs, miRNAs, and 
target drug molecules. Among the drug molecules, imatinib 
exhibited the highest binding affinity and MM-GBSA score 
with the CXCR3 receptor. In addition, the complexes 
remained stable during the molecular dynamics simulation 
and fluctuated less. The results of MD Simulations were fur
ther validated by PCA and DCCM analysis supporting the 
potential of imatinib as a treatment option for GBS and ASD. 
We tried to put a spotlight on the mysterious relationship 
between GBS and ASD throughout the study. Although this 
study may help to identify some potential biomarkers and 
drug candidates for GBS and ASD, further laboratory research 
is necessary for clinical validation.
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