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ABSTRACT

Guillain-Barré syndrome (GBS) is one of the most prominent and acute immune-mediated peripheral
neuropathy, while autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmen-
tal disorders. The complete mechanism regarding the neuropathophysiology of these disorders is still
ambiguous. Even after recent breakthroughs in molecular biology, the link between GBS and ASD
remains a mystery. Therefore, we have implemented well-established bioinformatic techniques to iden-
tify potential biomarkers and drug candidates for GBS and ASD. 17 common differentially expressed
genes (DEGs) were identified for these two disorders, which later guided the rest of the research.
Common genes identified the protein-protein interaction (PPI) network and pathways associated with
both disorders. Based on the PPl network, the constructed hub gene and module analysis network
determined two common DEGs, namely CXCL9 and CXCL10, which are vital in predicting the top drug
candidates. Furthermore, coregulatory networks of TF-gene and TF-miRNA were built to detect the
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regulatory biomolecules. Among drug candidates, imatinib had the highest docking and MM-GBSA
score with the well-known chemokine receptor CXCR3 and remained stable during the 100 ns molecu-
lar dynamics simulation validated by the principal component analysis and the dynamic cross-correl-
ation map. This study predicted the gene-based disease network for GBS and ASD and suggested
prospective drug candidates. However, more in-depth research is required for clinical validation.

KEY POINTS

e 17 common differentially expressed genes (DEGs) were identified from 693 DEGs of the GBS dataset
(GSE72748) and 365 DEGs of the ASD dataset (GSE113834), which is the preliminary part of this investigation.

e From the PPl network analysis, a total of 10 hub genes were identified and two common DEGs
named CXCL9 and CXCL10 were found in both the hub gene and essential module analysis.

e The identified leading pathways and GO pathways, TF-gene interaction, and TF-miRNAs network
has made the process more relevant and appropriate for suggesting probable drug candidates.

e Among the drug candidates, imatinib was suggested as the main drug candidate due to its inter-
action with the hub gene CXCL9 and CXCL10 and lower p value than the other candidates. It showed
the highest binding affinity score and remained stable with the CXCR3 chemokine receptor.

1. Introduction 100000 in older people aged 80years or above), and males
are considerably more prone to contract the disease than
females (Webb et al, 2015). Although the specific reason

behind the pathophysiology of GBS is not fully understood,

Guillain-Barré syndrome (GBS) is an inflammatory, acute-
onset, immune-mediated peripheral nervous system disorder

that has become the most prevalent contributor to neuro-
muscular paralysis (Berciano et al, 2017; Chang et al., 2012).
GBS has significant residual morbidity (Bae et al., 2014) that
worsens with age (0.06 per 100000 in infants and 2.07 per

it is believed that the condition has resulted from an adverse
immune response to infections that affects the peripheral
nerves (Leonhard et al., 2019). Before the onset of progres-
sive muscle weakness, the majority of patients first exhibit
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an underlying disease, most often an upper respiratory tract
infection (Shahrizaila et al., 2021). Various GBS outbreaks
have been reported, most of which have been linked to
infections with Campylobacter jejuni, while, other agents, like
the Zika Virus (ZIKV), have also been closely connected
(Anaya et al, 2017; Heikema et al., 2015). Based on the
molecular mimicry of such infectious agents, they may react
adversely with myelin or axonal parts of peripheral nerves,
leading to various types of GBS (Ansar & Valadi, 2015; Dash
et al, 2015).

In addition, the pathogenicity of GBS can be triggered by
some key factors, such as immunization, trauma, bone-mar-
row transplantation, and surgery (Fujimura, 2013).
Dysregulation and aberrant expression of several genes, par-
ticularly cytokine-coding genes, have previously been found
in peripheral blood specimens retrieved from GBS patients
while they undergo high-throughput expression profiling
(Safa et al., 2021; Zhang et al., 2013). Although several earlier
studies have shown links between particular genes and the
prevalence of GBS (Blum et al, 2014, 2018), the specific
mechanism underlying the genetic basis of GBS is still elusive
(Barzegar et al., 2012).

Besides, autism spectrum disorder (ASD) is a neurodeve-
lopmental disability defined by deficiencies in social and
communication skills, speech difficulties, and repetitive
behaviors that are assumed to be driven by abnormal neuro-
transmission mechanisms (Nisar et al., 2022). This prolonged
neurodevelopmental condition exhibits both core and associ-
ated symptoms. Loss of social interactions and diffusive, ster-
eotyped, and restricted behavior are the core symptoms of
autistic people, while impatience, stress, violence, and vari-
ous comorbidities are listed as associated symptoms
(Bhandari et al., 2020). About 0.6 to 0.8% of people are esti-
mated to be affected by ASD, while higher occurrences
have also been observed (Christensen et al., 2016; Kim et al.,
2011; Jussila et al., 2020). According to recent studies,
approximately one in 36 children may have ASD, which has
progressively increased in the past 20years (Zablotsky et al.,
2017). To date, no proper remedy is available for the core
symptoms of ASD patients is available (Mostafavi & Gaitanis,
2020). Although there are considerable differences among
patients with ASD, the disorder has a unique genetic link
with a complex inheritance pattern (Lord et al, 2020;
Veenstra-VanderWeele & Cook, 2004). Recent advances in the
discovery of genes and genomic locations leading to ASD
significantly enhance our understanding of the biology and
major concerns necessary to clarify the pathophysiology of
ASD (Manoli & State, 2021).

According to their breakthroughs in the regulation of dis-
ease molecular networks through multitargets on a system-
atic strategy, the pharmaceutical industry has recently
prioritized omics-based polypharmacology due to the com-
plexity of various diseases (Wang et al., 2012). The network
pharmacological approach has drawn considerable attention
since it combines system biology and genomics to reveal the
interconnections between complex biological systems, drugs,
and diseases (Sharma et al., 2022a; Sharma et al.,, 2022b). The
discovery of disease-specific biomarkers and pharmacological

therapeutic targets has been accelerated by high-throughput
methods based on “-omics’ (Yang et al., 2020). Nowadays,
high-throughput RNA sequencing has been used more
extensively than gene expression microarray analysis in bio-
logical and drug research due to its shorter detection time
and cost-effectiveness (Negi et al., 2022; Wang et al., 2009).
However, the pathogenicity of GBS and ASD is not fully
understood due to their complexity, and the study of the
RNA-seq data for them has not been disclosed yet.
Meanwhile, the link between GBS and ASD remains a mys-
tery and no specific therapeutic strategy has developed in
the last few decades.

Hence, we focused on identifying common differentially
expressed genes and their subsequent biological pathways to
explore the mysterious relationship between GBS and ASD. Two
RNA sequencing datasets, GSE72748 (for GBS) and GSE113834
(for ASD), collected from GEO NCBI, were evaluated to identify
differentially expressed genes. Based on common differentially
expressed genes, the identification of gene ontology and identifi-
cation of pathways, PPl analysis, hub genes and essential mod-
ules were accomplished. The identification of the hub gene from
the PPl network was the core part of the study, as it facilitates
the identification of probable drug candidates. Furthermore, TF-
DEG interactions and TF-miRNA coregulatory network were also
constructed to detect relevant transcription factors that regulate
differentially expressed genes at the transcriptional level. The
ultimate goal of this research was to find potential drug candi-
dates for these two brain disorders. Finally, molecular docking,
MM-GBSA calculation, density functional theory analysis, molecu-
lar dynamics simulation, principal component analysis (PCA), and
dynamic cross-correlation mapping (DCCM) approaches were uti-
lized to validate the potency of drug candidates (Figure 1).

2. Methodology
2.1. Collection of the dataset

We obtained the gene expression datasets for GBS and ASD
from the GEO-NCBI database to examine the genetic rela-
tionship between them (Barrett et al., 2012). The accession
number for the GBS dataset was GSE72748 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72748) which
was obtained from peripheral blood mononuclear cells of a
Guillain-Barré Syndrome patient and her healthy twin
sampled at three distinct points of disease progression. The
ASD dataset GSE113834 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE113834) focused on comparing the
expression of histamine-related genes in 13 patients with
ASD and 39 matched controls. Both datasets use RNA-seq
data and a high-throughput sequencing method was imple-
mented for their expression profiling. For the GSE72748 data-
set, the GPL10999 lllumina Genome Analyzer lIx platform
(Homo sapiens) was used and GPL15207 [PrimeView]
Affymetrix Human Gene Expression Array platform was used
for the GSE113834 dataset. José de la Fuente et al. contrib-
uted to the GSE72748 dataset (Doncel-Pérez et al., 2016) and
the GSE113834 dataset was provided by Parras et al. (2018).
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Figure 1. Graphical representation of the current study.

2.2. Identification of differentially expressed genes and
common genes between GBS and ASD

The identification of differentially expressed genes (DEGs) is
the key to determining the genetic connections between
two diseases. In our study, we used the Bioconductor
DESeq2 package in R to identify DEGs for GSE72748 and
GSE113834 (Love et al.,, 2014). A threshold criterion, pvalue
<0.05 and absolute log2 fold change (FC) > =1, was set for
both datasets to identify the significant DEGs. Both datasets
were normalized by log2 transformation before starting the
analysis and the false discovery rate was managed by the
Benjamini-Hochberg  correction method (Benjamini &
Hochberg, 1995). Finally, using the programming language R,
we locate the DEGs common to GSE72748 and GSE113834.

2.3. Identification of gene ontology and pathways by
functional enrichment analysis

An enrichment analysis was carried out to identify gene
ontological pathways and pathways for common DEGs via
the web-based platform Enrichr (Kuleshov et al., 2016). Gene
Ontology (GO) is a magnificent repository of computational
information on the function of genes and their regulation
(The Gene Ontology Consortium, 2017). We considered three
categories, namely biological process, molecular function,
and cellular component, for a better understanding of Gene
Ontology (GO) (Doms & Schroeder, 2005). A pathway-based
analysis maintains a high similarity to Gene Ontology (GO),
but it offers more precise and detailed information on the
molecular mechanisms that are responsible for complex dis-
eases (Holmans et al., 2009; Tilford & Siemers, 2009; Wang
et al, 2007). To identify significant pathways, we utilized
three pathway databases: KEGG (Kanehisa et al., 2012),
WikiPathways (Slenter et al., 2018), and BioPlanet (Huang
et al.,, 2019).
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2.4. Analysis of the PPIs network

Every protein is functionally interconnected with the other
protein in the ribosomal complex (De Las Rivas & Fontanillo,
2010). Most proteins tend to trigger their functions through
their interactions, and the retrieved PPl networks play a vital
role in almost all biological processes (Athanasios et al.,
2017). To build the PPI network of proteins encoded by com-
mon DEGs, we used the GeneMANIA database (http://www.
genemania.org). GeneMANIA is a versatile and user-friendly
web server for predicting gene functions by evaluating gene
sets (Warde-Farley et al., 2010). In the PPl network, the pro-
teins are represented by nodes, and their interactions are
indicated by edges. PPl networks were analyzed using the
Cytoscape app for better analysis and graphical visualization
(Smoot et al., 2011). Cytoscape is a free software program
that allows biologists to assess and interpret the interrela-
tionship of a set of genes or proteins by visualizing, model-
ing, and analyzing molecular and genetic interaction
networks (Yeung et al., 2008).

2.5. Identification of hub genes and Interpretation of
essential modules

A hub gene is considered to be the protein in a PPl network
that interacts with other proteins most frequently. To identify
the hub genes, CytoHubba (http://apps.cytoscape.org/apps/
cytohubba), a Cytoscape plugin, was used in the current
study. CytoHubba offers 11 topological analysis to identify
significant nodes in biological networks and has become
Cytoscape’s most influential hub identification plugin due to
its strong user-friendly interface (Chin et al, 2014). In add-
ition, hub genes produce some highly dense areas in the
protein-protein interaction network, which can be identified
as the essential module. We used a Cytoscape plugin,
Molecular Complex Detection (MCODE), to interpret the
highly concentrated modules. Modules identified through
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MCODE further contribute to the identification of potential
drug candidates (Taz et al., 2021).

2.6. TF-DEGs interactions

We analyzed the associations between Transcription Factors
(TFs) and common DEGs to identify regulatory biomolecules
in terms of understanding the regulation of DEGs of interest
at the transcriptional level. The online database
NetworkAnalyst was utilized to investigate the TF-DEGs inter-
action (Xia et al., 2015). NetworkAnalyst is a powerful web
server that enables its users to perform meta-analysis and
differential expression analysis for single or multiple gene
expression datasets (Xia et al.,, 2014; Zhou et al., 2019). The
JASPAR database (https://jaspar.genereg.net/), available in
NetworkAnalyst, was used for the topological analysis of the
TF-DEGs interaction network.

2.7. Construction of the TF-miRNA coregulatory network

TF-miRNA coregulatory interactions were obtained from the
RegNetwork database that helps to identify miRNAs and
regulatory TFs at the transcriptional and post-transcriptional
levels (Liu et al., 2015). NetworkAnalyst was used to visualize
the TF-miRNA network and this platform enables researchers
to explore big numbers of complex gene datasets for the
generation of new biological hypotheses (Xia et al., 2015).

2.8. Identification of candidate drugs

The ultimate goal of our current study is the identification of
drug molecules. We evaluate the common DEGs for GBS and
ASD through the DSigDB database (Yoo et al,, 2015) to iden-
tify candidate drugs. Access to the databases was obtained
from the Enrichr online server. Enrichr is a user-friendly web-
based platform that offers numerous forms of presentation
summaries of collaborative gene functions for insightful
enrichment analysis (Chen et al.,, 2013).

2.9. Homology modeling of the CXCR3 receptor

Using the Prime module in Schrodinger Maestro Suite
(Jacobson et al., 2004), we accomplished the homology mod-
eling of CXCR3. The UniProt database (https://www.uniprot.
org/) was utilized to provide the human CXCR3 sequence
(Accession ID: P49682). Due to the strong sequence resem-
blance, we chose the G protein-coupled CXCR2 structure of
Homo sapiens (PDB ID: 6LFM) as the preferred template for
homology modeling of human CXCR3 applying NCBI Protein
BLAST against the PDB database. The alignment between the
query and the selected template was calculated using the
ClustalW alignment method. Finally, the knowledge-based
model building method in Prime was applied to conduct the
homology modeling. Then, the loop refinement and energy
minimization of the built structure was performed using the
OPLS3e force field in Schrodinger Prime. The minimized
model was then validated using the Ramachandran plot,
obtained from the PROCHECK web server (Laskowski et al.,
2006).

2.10. Molecular docking and MM-GBSA calculation

Molecular docking is a drug discovery technique that can
determine the interactions of amino acid residues between
the target protein and prepared ligands in a conformation
with the least amount of energy (Ferreira et al., 2015; Hasib
et al, 2022). Here, we docked the top 10 identified drug mol-
ecules with the previously built CXCR3 receptor. The
PubChem database was used to extract the 3D chemical
structures of the identified drug molecules in SDF format.
Then, the LigPrep module available in the Schrodinger Suite
was used to prepare the ligands while maintaining the ori-
ginal state. Energy minimization was performed using the
OPLS3e force field. The protein structure was prepared by
the protein preparation wizard on the Maestro panel. During
the preparation of the protein, hydrogen atoms were added
and missing loops were also filled. Then, water molecules
were removed within 3 A of het groups and the structure
was optimized. Finally, the OPLS3e force field was applied to
minimize the structure of the protein. Further receptor grid
boxes were generated using the ‘Glide’s Receptor Grid
Generation’ module at the active site of the receptor. The
size of the grid box on the X, Y, and Z axis was 10 A x 10
A %10 A. Furthermore, we have calculated the MM-GBSA
scores using the Prime module in Schrodinger Suite to justify
the results of molecular docking (Campanella et al, 2008).
Here, the OPLS3e force field and the VSGB 2.0 solvation
model were utilized to perform the analysis (Roos et al,
2019; Li et al., 2011).

2.11. Density functional theory analysis for ligand
optimization

The ligand was subjected to quantum mechanical optimiza-
tion (QM) using density functional theory (DFT) calculations
performed by Jaguar v-10.9 (Bochevarov et al, 2013). The
DFT analysis employed B3LYP in combination with 6-31G
(d,p) basis sets. The ligand with the highest binding affinity
and the MM-GBSA score was selected for DFT calculation.
The analysis also focused on evaluating the frontier molecu-
lar orbitals, namely, the highest occupied molecular orbitals
(HOMOs) and lowest unoccupied molecular orbitals (LUMOs),
as well as their energy gap differences. The chemical hard-
ness (1) and softness (S) can be determined using the follow-
ing equations:
Hardness (1) = (I — A)/2 (1)
Softness (S) = 1/ 2)
In Equation (1), We represent the ionization potential
(-EHOMO), while A denotes the electron affinity (-ELUMO).
The lower the hardness value, the higher the reactivity, and

vice versa. Softness (S) refers to an atom'’s ability to receive
electrons, while 7 represents hardness.

2.12. Molecular dynamics simulation

A 100 ns molecular dynamics (MD) simulation of the protein-
ligand complex was performed to evaluate the binding sta-
bility of the drug compound to the CXCR3 receptor protein.


https://jaspar.genereg.net/
https://www.uniprot.org/
https://www.uniprot.org/

The Schrodinger Desmond v3.6 program (https://www.schro-
dinger.com/), operating in a Linux environment, was
employed to conduct the MD simulations and investigate
the thermodynamic consistency of receptor-ligand complexes
(Biswas et al., 2021). The TIP3P water solvation model was
used in an orthorhombic simulation cell with periodic
boundary condition at a separation distance of 10A (Harrach
& Drossel, 2014). To achieve electrical neutralization, counter
ions were used, and 0.15M sodium chloride was added to
simulate physiological conditions with 300K temperature and
1atm pressure using NPT ensemble throughout the simula-
tion period (Kandeel et al., 2023). The OPLS3e force field,
available in the Desmond package, was used to minimize
energy and relaxation of the system (Roos et al., 2019).
Simulation snapshots were saved after 50ps intervals.
Molecular dynamics simulation snapshots were generated
using the Schrodinger maestro application v9.5. The accuracy
of the entire simulation event was assessed using the
Simulation Interaction Diagram (SID) from the Desmond
modules within the Schrodinger suite. The stability of the
protein-ligand complex was ascertained by analyzing several
factors such as root mean square deviation (RMSD), root
mean square fluctuation (RMSF), solvent accessible surface
area (SASA), the radius of gyration (Rg) and intramolecular
hydrogen bonds values. Using the Bio3D package in R, the
principal component analysis (PCA) and the dynamic cross-
correlation matrix (DCCM) were carried out.

2.13. MM-GBSA calculation from the molecular
dynamics simulation trajectory

The binding free energy of ligands to macromolecules is

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS . 5

(Genheden & Ryde, 2015). In this study, we employed the
Prime module within the Schrodinger Maestro package to
analyze the MM-GBSA calculation for the docked complex,
based on the post-MD Simulations trajectory. The OPLS3e
force field and the VSGB 2.0 solvation model were utilized to
estimate the binding free energy. The total free energy bind-
ing was determined by the following equation:

dGbind =

Here, dGbind represents the binding free energy,
Gcomplex denotes the free energy of the complex, Gprotein
corresponds to the free energy of the target protein, and
Gligand represents the free energy of the ligand.

Gcomplex — (Gprotein + Gligand)

3. Results

3.1. Identification of differentially expressed genes and
common genes between GBS and ASD

A total of 693 DEGs for Guillain-Barré syndrome (GBS) was iden-
tified from the GSE72748 dataset. Among them, 141 genes
were up-regulated and 552 genes were down-regulated. The
GSE102741 dataset was used for autism spectrum disorder
(ASD) to identify DEGs. A total of 365 DEGs were identified
where 92 genes were upregulated and 273 genes were down-
regulated. Cross-comparison analysis between 693 GBS genes
and 365 ASD genes was done using the R programming lan-
guage. We identified 17 (SNORA21, TNXB, SNORA61, CXCL9,
CXCL10, HLA-L, CRISP3, TNFRSF12A, Clorf116, LOC100008587,
PF4, CESTP1, C190rf33, HIST1H3D, LY6G5B, COL11A2, TMEM253)
common DEGs for GBS and ASD through this approach. The
overall results were represented by a Venn diagram and it

commonly evaluated using the Molecular Mechanics revealed that, among the 1058 DEGs, 1.5% of genes are com-
Generalized Born Surface Area (MM-GBSA) methods mon (Figure 2).
GBS ASD
(693) (365)
P
y
y
4
//
///
//
/
/
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676 | 17 348
(64.9%) x, (1.6%) (33.4%)
\
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Figure 2. A Venn diagram for the representation of common differentially expressed genes. Among the 693 GBS DEGs and the 365 ASD DEGs, 17 DEGs are identi-

cal to both diseases, which is 1.6% of the total DEGs.
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Table 1. Top three GO terms and their subsequent GO pathways with p values, combined scores, and corresponding DEGs.

GO terms ID GO pathways p values Combined scores Genes

GO biological process G0:0043950  Positive regulation of cAMP-mediated signaling 2.848E-08 14875.515 CXCL10, CXCL9, PF4
G0:0030814 Regulation of cAMP metabolic process 1.451E-07 6739.106 CXCL10, CXCL9, PF4
GO:1900544  Positive regulation of purine nucleotide metabolic process  1.845E-07 6032.529 CXCL10, CXCL9, PF4
G0:0030801  Positive regulation of cyclic nucleotide metabolic process 2.836E-07 4962.477 CXCL10, CXCL9, PF4
G0:0043949  Regulation of cAMP-mediated signaling 4.129E-07 4193.287 CXCL10, CXCL9, PF4
G0:0030816 Positive regulation of cCAMP metabolic process 1.310E-06 2518.932 CXCL10, CXCL9, PF4
G0:0002688  Regulation of leukocyte chemotaxis 2.041E-06 2075.073 CXCL10, CXCL9, PF4
G0:0002687  Positive regulation of leukocyte migration 3.002E-06 1753.749 CXCL10, CXCL9, PF4
G0:0050921 Positive regulation of chemotaxis 8.615E-06 1107.217 CXCL10, CXCL9, PF4
G0:0070098  Chemokine-mediated signaling pathway 1.106E-05 995.444 CXCL10, CXCL9, PF4

GO molecular function G0:0045236 ~ CXCR chemokine receptor binding 3.442E-07 4548.599 CXCL10, CXCL9, PF4
G0:0008009  Chemokine activity 7.569E-06 1171.694 CXCL10, CXCL9, PF4
G0:0042379  Chemokine receptor binding 9.172E-06 1077.273 CXCL10, CXCL9, PF4
GO0:0005125 Cytokine activity 2.866E-04 228.055 CXCL10, CXCL9, PF4
G0:0008603  cAMP-dependent protein kinase regulator activity 0.0059356 1066.850 CcXcL1o
G0:0004771 Sterol esterase activity 0.0076254 760.963 CESTP1
G0:0004806  Triglyceride lipase activity 0.0210470 200.681 CES1P1
G0:0016298 Lipase activity 0.0359419 98.691 CES1P1
GO:0005178  Integrin binding 0.0769945 34.273 TNXB
G0:0052689  Carboxylic ester hydrolase activity 0.0840661 30.164 CES1P1

GO cellular component  G0:0062023  Collagen-containing extracellular matrix 0.003796 62.11 TNXB, COL11A2, PF4
G0:0034774  Secretory granule lumen 0.02894 29.59 CRISP3, PF4
GO0:1904724  Tertiary granule lumen 0.04575 71.15 CRISP3
G0:0035580  Specific granule lumen 0.05143 60.57 CRISP3
G0:0031093  Platelet alpha granule lumen 0.05547 54.54 PF4
G0:0031091  Platelet alpha granule 0.07384 36.41 PF4
G0:0042581 Specific granule 0.1277 16.04 CRISP3
G0:0070820  Tertiary granule 0.1307 15.47 CRISP3
G0:0070013 Intracellular organelle lumen 0.1608 5.51 CRISP3, COL11A2
G0:0005788  Endoplasmic reticulum lumen 0.2166 6.63 COL11A2

3.2. Identification of gene ontology and pathways by
functional enrichment analysis

To determine the relationship between different disorders,
pathway-based research is needed because human diseases
are interconnected with each other (Podder et al., 2020). We
identified GO terms and significant signaling pathways for 17
common DEGs through the Enrichr web tool. For GO terms
the top three subsections, namely biological process,
molecular function, and cellular component, were evaluated,
and for signaling pathway identification, we used Enrichr’s
KEGG, WikiPathways, and BioPlanet databases. Table 1 repre-
sents the top three GO terms (biological process, molecular
functions, and cellular component) for the DEGs shared by
GBS and ASD. The positive regulation of cAMP-mediated sig-
naling and the regulation of the cAMP metabolic process
were most profoundly regulated by the common DEGs in
terms of GO biological process. GO molecular function dis-
closed the involvement of CXCR chemokine receptor binding
and chemokine activity in common DEGs. For the GO cellular
component, collagen-containing extracellular matrix and
secretory granule lumen were highly involved in common
DEGs. The results of KEGG, WikiPathways, and BioPlanet
pathways are depicted in Table 2. In the case of the KEGG
and WikiPathway, the chemokine signaling pathway and toll-
like receptor signaling pathway were identified as the most
interactive pathways along with the cytokine-cytokine recep-
tor interaction and the type Il interferon signaling pathway.
Furthermore, the binding of chemokines to chemokine
receptors, cytokine-cytokine receptor interaction, and TWEAK
regulation of gene expression pathway were predominantly
regulated by the common DEGs during the BioPlanet

pathway analysis. Here, Figure 3(A) represented the bar
graph for three GO terms, whereas Figure 3(B) showed the
bar graph for the KEGG, WikiPathway, and Bioplanet path-
way. For each category, only the top 10 relevant pathways
were identified based on their lower pvalue.

3.3. Analysis of the PPl network

The functional interactions of proteins are predicted through
the analysis of the PPl network which provides important
aspects of disease analysis and drug design (Ayub et al,
2020; Miryala et al., 2018). In the current study, by importing
all 17 common DEGs into the GeneMANIA database (https://
genemania.org/) as input data, we built a PPl network. Then,
for better visual representation, the GeneMANIA network was
reformed utilizing the Cytoscape app. The PPl network con-
sists of 49 nodes and 781 edges, where each node is a single
protein, and the protein interconnections are symbolized by
the edges (Figure 4). This PPl network was later explored to
detect the hub genes using different topological parameters
to identify potential therapeutic targets.

3.4. Identification of hub genes and module
interpretation for predicting therapeutic targets

The hub genes are the genes that exhibited the highest
degree of connectivity in the principal module (Liu et al.,
2020). Cytohubba plugin (Chen et al., 2009) from Cytoscape
was used to identify hub genes based on their degree val-
ues. The top ten hub genes detected in our current study
are CCL5, CCL18, CXCL12, CXCL1, CXCL8, CCL2, CCL2, CXCLY9,


https://genemania.org/
https://genemania.org/
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Table 2. Top 10 KEGG, WikiPathway, and BioPlanet pathways with their corresponding p values, combined scores, and interacting DEGs.

Terms Pathways p values Combined scores Genes
KEGG Cytokine-cytokine receptor interaction 9.36E-05 193.823 CXCL10, CXCL9, TNFRSF12A, PF4
Chemokine signaling pathway 5.20E-04 171.524 CXCL10, CXCL9, PF4
Toll-like receptor signaling pathway 0.003 147.252 CXCL10, CXCL9
Cytosolic DNA-sensing pathway 0.052 59.279 cxcLio
RIG-I-like receptor signaling pathway 0.058 51.396 cxcLio
ECM-receptor interaction 0.067 41.399 TNXB
Protein digestion and absorption 0.074 36.406 COL11A2
IL-17 signaling pathway 0.076 34.787 cxcLio
TNF signaling pathway 0.090 27.500 cxcLio
Systemic lupus erythematosus 0.107 20.982 HIST1H3D
WikiPathway Chemokine signaling pathway 3.38E-04 210.839 CXCL10, CXCL9, PF4
Type Il interferon signaling 4.45E-04 586.461 CXCL10, CXCL9
Toll-like Receptor Signaling Pathway 0.003 149.214 CXCL10, CXCL9
Regulation of toll-like receptor signaling pathway 0.006 98.524 CXCL10, CXCL9
Platelet-mediated interactions with vascular and circulating cells 0.014 330.974 PF4
miRNA targets in ECM and membrane receptors 0.019 236.908 TNXB
Hippo-Yap signaling pathway 0.019 223.630 CcXcL1o
Focal Adhesion-PI3K-Akt-mTOR-signaling pathway 0.027 31.562 TNXB, COL11A2
The effect of progerin on the involved genes in Hutchinson-Gilford 0.031 120.296 HIST1H3D
Progeria Syndrome
Fibrin Complement Receptor 3 Signaling Pathway 0.031 120.296 cxcLio
BioPlanet Binding of chemokines to chemokine receptors 1.23E-05 946.732 CXCL10, CXCL9, PF4
Cytokine-cytokine receptor interaction 6.26E-05 225.034 CXCL10, CXCL9, TNFRSF12A, PF4
TWEAK regulation of gene expression 2.36E-04 889.102 CXCL10, TNFRSF12A
Chemokine signaling pathway 5.12E-04 172.806 CXCL10, CXCL9, PF4
Peptide G-protein coupled receptors 5.36E-04 169.007 CXCL10, CXCL9, PF4
G alpha (i) signaling events 5.95E-04 160.657 CXCL10, CXCL9, PF4
Type Il interferon signaling (interferon-gamma) 8.13E-04 393.962 CXCL10, CXCL9
ECM-receptor interaction 0.002 196.926 TNXB, COL11A2
Thymic stromal lymphopoietin (TSLP) pathway 0.003 179.351 CXCL10, CXCL9
GPCR ligand binding 0.005 55.255 CXCL10, CXCL9, PF4
A_ Pathways (i) GO Biological Process BIl By (i) KEGG

Chemokine-mediated signaling pathway (GO: 0070098)
Positive regulation of chemotaxis (GO: 0050921)
Positive regulation of leukocyte migration (GO: 0002687)
Regulation of leukocyte chemotaxis (GO: 0002688)

Systemic lupus erythematosus
TNF signaling pathway
IL- 17 signaling pathway

Positve regulation of cAMP metabolic process (GO: 0030816) Protein digestion and absorption
Regulation of cAMP- mediated signaling (GO: 0043949) ECM:- receptor interaction
Positive regulation of cyclic nucleotide metabolic process (G0: 0030801) RIG-I-like receptor signaling pathway
Positive regulation of purine nucleotide metabolic process (GO: 1900544) Cytosolic DNA-sensing pathway.
Regulation of cAMP metabolic process (GO: 0030814) Toll-like receptor signaling pathway
Positive regulation of cAMP- mediated signaling (GO: 0043950) Chemokine signaling pathway.
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(iii) GO Cellular Component (iiii) BioPlanet
Pathways Pathways
Endoplasmic reticulum lumen (GO: 0005788) GPCR ligand binding
lintracellular organelle lumen (GO: 0070013) (GO: 0005178) Thymic stromal lymphopoietin (TSLP) pathway
Tertiary granule (GO: 0070820) ECM-receptor interaction
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Figure 3. (A) the bar graph for three gene ontological subsections, biological process (i), molecular function (ii), and cellular component (iii). (B) The bar graph for
(i) KEGG, (ii) WikiPathway, and (iii) BioPlanet. The top 10 pathways for each term were identified based on their lower pvalue.
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Figure 4. The protein-protein interaction network for common DEGs. The network consists of 49 nodes and 781 edges. Each node represents the differentially
expressed genes, and the edges indicate the link between the genes. The nodes in cyan specify the common differentially expressed genes.

CXCL10

CXCLY

Figure 5. Identification of hub genes from the protein-protein interaction net-
work. The network contains 39 nodes and 522 edges where the highlighted
nodes indicate the hub genes. In this interactive network, CCL5 exhibited the
highest degree value of 66.

CXCL10, CXCL2, and CCL3. The protein-protein interaction
network for hub proteins and other correlated proteins was
demonstrated in Figure 5. The interacting network has 39
nodes and 522 edges. These identified hub genes may be
used as potential drugs in the future.

Furthermore, the results of different topological parame-
ters for hub genes are shown in Table 3. Next, the highly
connected module analysis was done using another

Table 3. Topological parameters including degree, closeness centrality, eccen-
tricity, and clustering coefficient for 10 hub genes.

Hub genes Degree Closeness centrality Eccentricity Clustering coefficient
CCL5 66 38.66667 0.33333 0.30583
CccL18 62 39.33333 0.33333 0.35272
CXCL12 60 40.83333 0.33333 0.38588
CXCL1 59 39.16667 0.33333 0.39158
CXCL8 58 38.66667 0.33333 0.40169
CCL2 58 39.83333 0.33333 0.40653
CXCL9 54 38.66667 0.33333 0.46681
CXcLio 52 39.16667 0.33333 0.50679
CXCL2 52 40.83333 0.33333 0.51735
CcL3 52 39.16667 0.33333 0.51056

Cytoscape plugin named MCODE. The functional module
derived from the PPI network plays an important role In con-
trolling a specific cellular process (Li et al., 2012). In our
study, the module analysis network contains 32 nodes and
671 edges, demonstrating that common DEGs CXCL9,
CXCL10, and PF4 were highly interconnected in the dense
module network (Figure 6).

3.5. TF-gene interactions

In cellular processes, TFs play a pivotal role and control gene
expression in all living organisms at the transcriptional level
(Cheng et al, 2012). We analyzed TF-gene interactions for
the common DEGs through the NetworkAnalyst online data-
base. The TFs-DEGs network was shown in Figure 7, which
revealed that the network comprises 87 nodes and 138
edges, of which 72 TF-genes were found. In this network,
each TF-gene regulates at least one common differentially
expressed gene, among them, TNXB was regulated by the
highest number of TF-genes (57 TF-genes).



3.6. TF-miRNA coregulatory network

miRNAs are short, single-stranded noncoding RNAs that par-
ticipated in the regulation of gene expression at the post-
transcriptional level (Cao et al., 2016). miRNAs have a pivotal
role as a biological regulator in neurodegenerative disorders
such as neuronal differentiation, neurogenesis, and synaptic
(Rahman et al,

plasticity 2020). Therefore, using

Figure 6. Essential module interpretation network generated from the PPl net-
work. This network contains 32 nodes and 671 edges in which CXCL9, CXCL10,
and PF4 were marked pink because these three hub genes are common in
both the GBS and ASD datasets.
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NetworkAnalyst, we constructed the TF-miRNA coregulatory
network to obtain detailed information on these regulatory
biomolecules that regulate our common DEGs. The TF-
miRNA coregulatory network contains 177 nodes and 218
edges, of which 85 miRNAs and 79 TF-genes were identified.
These identified TF-genes and miRNAs highly interacted with
our common DEGs (Figure 8).

3.7. Identification of candidate drugs

Based on the lower pvalue and adjusted pvalue, the top 10
drug molecules for 177 common DEGs were identified from
the DSigDB database of the Enrichr web server. The drug
candidates that had a lower pvalue and adjusted pvalue, and
linked with the hub genes CXCL9 and CXCL10 were consid-
ered for further evaluation. According to our experiment,
these two hub genes were identified as dense modules and
were closely related to each analysis of the study. Therefore,
these two common nodes were emphasized over the other
DEGs to identify candidate drugs.

The result obtained from the database revealed that
Gadodiamide hydrate CTD 00002623 and Imatinib CTD
00003267 exhibited lower pvalue and adjusted pvalue com-
pared to the rest of the drug candidates. Most drug candi-
dates including these two molecules were found to be
associated with CXCL9 and CXCL10 in the following study.
Table 4 represents the top 10 drug candidates detected from
DSigDB.

Figure 7. The TF-gene interaction network. This network has 87 nodes and 138 edges where 72 genes were determined as TF-genes. The nodes in maroon color

indicate the common differentially expressed genes.
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Figure 8. Representation of the TF-miRNA coregulatory network. The network holds 177 nodes and 218 edges in which 85 miRNAs and 79 TF-genes were present.
The nodes in the cyan color represent the common DEGs, the nodes in the maroon color are miRNAs, and the purple nodes specify the TF-genes.

Table 4. Top 10 suggested drug molecules for GBS and ASD with their pvalue, adjusted pvalue, and interacting DEGs.

Drug candidates p value Adjusted p value Interacting genes
Gadodiamide hydrate CTD 00002623 6.02E-04 0.20049641 CXCL10, CXCL9

Imatinib CTD 00003267 0.003527 0.20049641 CXCL10, CXCL9

Cicloheximide PC3 UP 0.00374 0.20049641 C10RF116, TNFRSF12A, HIST1H3D
Thapsigargin PC3 UP 0.007439 0.20049641 CT10RF116, TNFRSF12A, HIST1H3D
Irinotecan PC3 UP 0.008179 0.20049641 C10RF116, SNORA21, HIST1H3D
Lycorine PC3 UP 0.008496 0.20049641 CT10RF116, TNFRSF12A, HIST1H3D
3-Nitrofluoranthene CTD 00001617 0.010155 0.20049641 CXCL10

Roxarsone CTD 00006708 0.010997 0.20049641 CXCL9

Roflumilast CTD 00003916 0.010997 0.20049641 CXCL10

Rolipram CTD 00007371 0.012679 0.20049641 CXCL10

3.8. Protein modeling, molecular docking, and
MM-GBSA analysis

The homology modeling, refinement, and energy minimization
of the 3D structure of CXCR3 receptor protein (Figure 9(A))
was carried out by the Prime module of the Schrodinger
Suite (paid version). Structural validation of the built protein
was performed by the Ramachandran plot. The modeled
protein had 368 amino acid residues, where 91.8% of the
residues fall into the most favoured regions (residues in the
red zone of Figure 9(B-i)). Almost similar results have been
observed when the ligand imatinib binds to the CXCR3
receptor (Figure 9(B-ii)). 90.03% of the residues were present
in the most favoured regions in the case of receptor-ligand
binding.

The energy of the ligand-receptor binding was then calcu-
lated by the molecular docking approach as it is most

extensively utilized in drug discovery to interpret the ligand-
target interaction and identify possible therapeutic target
compounds (Pinzi & Rastelli, 2019). In our study, we docked
the top 10 drug molecules that were identified from the
DSigDB database to gain more information on their inter-
action with the CXCR3 receptor.

The results revealed that imatinib exhibited the highest bind-
ing affinity of —7.338kcal/mol. Imatinib interacted with A: TYR-
270 by forming a hydrogen bond and with A: PHE-46,130 by a
pi-pi stacking bond (Figure 10). in addition, imatinib interacted
with A: GLU-292 through a salt-bridge bond and formed a pi-cat-
ion bond to interact with A: LYS-299 (Figure 10). to validate the
results of molecular docking analysis, we calculated the MM-
GBSA values of the top 10 drug molecules. Complying the
molecular docking, imatinib exhibited the highest MM-GBSA
score of —68.27 kcal/mol. Table 5 represents the binding affinity
and MM-GBSA scores for the top 10 drug molecules. Thereafter,
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Figure 9. (A) the 3D Crystallographic structure of the CXCR3 protein. (B) Ramachandran plot demonstrating various sections of the structure of the CXCR3 receptor
protein (i) and CXCR3-imatinib complex (ii). Here, the red-marked area indicates the most favoured regions for the residues, the yellow zone denotes the additional

allowed regions, and the glycine residues are plotted as triangles.

imatinib was finally evaluated through DFT, molecular dynamics
simulation, PCA, DCCM, and MM-GBSA calculations as the top-
most drug candidate

3.9. Ligand optimization by density functional theory

Frontier molecular orbitals, namely the Highest Occupied
Molecular Orbital (HOMO) and Lowest Unoccupied Molecular
Orbital (LUMO), are of paramount significance in characteriz-
ing the reactivity and stability of ligand-receptor interactions
for chemical species (Jana & Singh, 2019). In this study, we
employed density functional theory (DFT) to computationally
determine the orbital energies of imatinib. According to the
DFT results, the HOMO and LUMO energy scores were
—0.200 and —0.052 a.u, where the energy gap (HLG) was
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0.148 eV (Figure 11). Furthermore, the hardness and softness
energy of imatinib was 0.074 and 13.514eV. Table 6 shows
the results of the DFT calculation for imatinib.

3.10. Molecular dynamics simulation

The molecular dynamics study was conducted to analyze the
structural variations and rigidity of the docked complex in a
simulating environment. The root mean square deviations of
the C-alpha atoms of the simulating systems were illustrated
in Figure 12 where the Apo (CXCR3 receptor protein) and
the docked complex (imatinib-CXCR3) had an initial increase
in RMSD due to the flexible behavior of the complex. Both
protein systems were stabilized after 20 ns and maintained a
lower degree of the deviations till the whole simulations
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Figure 10. The molecular interaction between imatinib and the CXCR3 chemokine receptor through molecular docking study.

Table 5. The top 10 drug molecules with their binding affinity and MM-GBSA scores (Kcal/mol) with the CXCR3 receptor.

Drug molecules

Binding affinity (kcal/mol)

MM-GBSA scores (dGping) (kcal/mol)

Imatinib —7.338
Lycorine —7.092
3-Nitrofluoranthene —6.702
Cicloheximide —6.061
Irinotecan —5.592
Rolipram —5.465
Roflumilast —5.129
Gadodiamide hydrate —4.683
Roxarsone —3.732
Thapsigargin —1.585

—68.27
—45.93
—44.32
—43.45
—55.56
—40.67
—35.27
-19.73
—20.69
—48.10

times. The RMSD profile of both systems did not exceed 3 A,
defining the stable nature of the complex.

The root mean square fluctuation of protein systems is a
benchmark that defines flexibility across the regions (Hasib
et al., 2022). Figure 13 indicates that the RMSF value of the
CXCR3 protein and the imatinib-CXCR3 complex was lower
than 2.5A which denotes the conformational stability of
both complexes. The CXCR3-imatinib complex showed less
fluctuation during simulation compared to Apo (CXCR3
receptor). The majority of the variation occurred at the
beginning and end of the MD simulation as the N- and C-ter-
minal domains were present.

Moreover, the solvent accessible surface area is a key
determinant of protein stability. The higher SASA indicates
an expansion in the protein structure, whereas the lower
SASA defines the truncated nature of the complexes.
Figure 14 showed that the protein complex had an initial
rise in SASA at the start of the simulation but reached stable
states after 40 ns. The CXCR3-imatinib complex maintained a
stable profile during the rest of the simulation periods, which
correlates with the compactness of the system.

Similarly, the compactness of protein is determined by the
radius of gyration (Rg). The Rg value defines the distribution of
atoms across a protein-ligand complex. The lower radius of gyr-
ation indicates tight packing of protein in a simulating system
(Lobanov et al, 2008). In the Rg analysis, the CXCR3-imatinib
complex exhibited almost a flat line throughout the simulation,
indicating the structural compactness of the system (Figure 15).

In addition, the intramolecular interaction formed by differ-
ent bonds between the CXCR3 receptor and imatinib was ana-
lyzed. The intramolecular hydrogen bond of the complex
defines the stability and rigidity of the protein system.
Figure 16 indicates that imatinib interacted with CXCR3 by
forming several bonds, such as the hydrogen, hydrophobic,
ionic, and water bridges, and maintained these contacts
throughout the simulation period. In addition, we have calcu-
lated the PSA and molSA values for the CXCR3-imatinib com-
plex where the complex showed stability during simulation
(See Supplementary File 3)

Principal component analysis (PCA) has been widely used to
analyze the dynamic behavior of proteins (David & Jacobs, 2014).
It enables the identification of collective motions exhibited by
protein trajectories during molecular dynamics (MD) simulations.
In our study, we employed PCA to analyze the CXCR3-imatinib
complex system (Figure 17(A)), plotting the eigenvalues against
their corresponding eigenvector indices for the first 20 modes of
motion. These eigenvalues represent fluctuations in the protein’s
eigenvectors within hyperspace. In particular, the overall move-
ment of the proteins in our simulations is primarily governed by
eigenvectors with higher eigenvalues. Among the first five eigen-
vectors, which displayed dominant movements, eigenvalues
ranging from 18.3% to 80.2% were observed, while the remain-
ing eigenvectors exhibited lower eigenvalues.

To capture the majority of total variations, we focused on
the first three principal components, PC1, PC2, and PC3,
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HOMO (a.u) = -0.200
HLG (eV) = 0.148

LUMO (a.u) =-0.052

Figure 11. Structure of imatinib with the HUMO and LUMO energy score. HLG
represents the energy gap between HUMO and LUMO.
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which collectively accounted for over 40% of the total vari-
ability. Analyzing Figure 17(A), we observed that PC1 demon-
strated the highest variability, accounting for 18.26% of the
overall motion, followed by PC2 with a variability of 13.02%.
On the contrary, PC3 exhibited minimal variability at 11.54%.
This reduced variability indicates that PC3 corresponds to
a stabilized protein-ligand binding state, occupies a relatively
confined region in phase space and adopts a compact struc-
ture compared to PC1 and PC2. Using simple clustering
within the PC subspace, our PCA analysis successfully uncov-
ered conformational changes across all clusters. Blue regions
exhibited the most significant movement, white regions dem-
onstrated intermediate movement, while red regions sug-
gested reduced flexibility and movement.

Furthermore, the pairwise correlation map, depicted in
Figure 17(B), provided insights into the relationship between
imatinib and the CXCR3 protein. The map displayed pairwise
cross-correlation coefficients, with values above 0.8 repre-
senting strong positive correlations and highlighted in cyan.
Conversely, residues with anticorrelated behavior, indicated
by values below —0.4, were marked in purple. The high per-
centage of pairwise-correlated residues signifies a stable
binding between the CXCR3 receptor protein and imatinib,
thus confirming their strong interaction.

3.11. Binding free energy calculation

The MM-GBSA approach is commonly employed for assess-
ing the binding free energy between protein molecules and
ligands. In this study, we investigated the impact of various
non-bonded interaction energies on the binding free energy
of the CXCR3-imatinib complex. Our findings revealed that
the binding free energy of imatinib to CXCR3 was deter-
mined to be -83.66kcal/mol (Figure 18). Among the

Table 6. Density functional theory calculation result of imatinib after molecular docking and MM-GBSA analysis.

Compound name PubChem ID eHOMO (a.u) eLUMO (a.u) HLG (eV) (Hardness (eV) Softness (eV)
Imatinib CID-5291 —0.200 —0.052 0.148 0.074 13.514
20
~Imatinib +CXCR3 Receptor (Apo)

Protein (Ca) RMSD (A)

50 60 70 80 9%
Time (ns)

Figure 12. Molecular dynamics simulation trajectory analysis to determine the conformational stability of CXCR3 after the binding of imatinib through the calcula-

tion of RMSD values.
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Figure 13. Determination of the RMSF value for the protein C atoms in the docked CXCR3-imatinib complex.
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Figure 14. Calculation of the solvent accessible surface area (SASA) value for the selected ligand and CXCR3 receptor using 100 ns simulation.

15
-~ Imatinib
12
—~
<
£°
=
=
5
16}
3 M%
36
2
3
0
0 10 20 30 40 50 60 70 80 90 100
Time (ns)

Figure 15. Radius of gyration (Rg) analysis for the CXCR3-imatinib complex by employing 100 ns molecular dynamics simulation.
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Figure 16. The stacked bar graphs represent the intramolecular interactions between the CXCR3 receptor protein and imatinib.
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Figure 17. (A) Principal component analysis for the CXCR3-imatinib complex. Here, the eigenvalue was plotted against the proportion of variance (%). three PCs
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Table 7. The average MM-GBSA binding free energy calculation of imatinib
with CXCR3 from post molecular dynamics simulation trajectories.

Parameters Energies (Kcal/mol)
dGping —83.66
dGpingCoulomb —-41.84
dGbindCovaIent 6.50
dGbindeond —-2.71
dGbindLipo —33.59
dGp;ngSolvGB 57.86
dGbindVdW —70.74

different types of interactions, the GbindvdW, GbindLipo,
GbindCoulomb, and GbindSolvGB energies exerted the most
significant influence on the average binding energy.
Conversely, the contribution of the GbindCovalent energy to
the overall binding energy was found to be minimal.
Furthermore, the interaction analysis based on GbindHbond
values demonstrated the formation of stable hydrogen
bonds between the CXCR3-imatinib complex. Table 7
showed the binding free energy and other non-bonded
interaction energies for the CXCR3-imatinib complex.

4, Discussion

The majority of cases of impairment are triggered by neuro-
logical disorders, which are also the second leading cause of
death worldwide. Especially in low and middle-income coun-
tries, the actual numbers of deaths and individuals with dis-
abilities caused by neurological disorders have increased
significantly in the last 30years (Feigin et al., 2020). Many
nervous system disorders are minimally responsive to exist-
ing treatments, but are potential candidates for gene ther-
apy, an approach that can correct the genetic abnormalities
contributing to its pathogenesis at the molecular level
(Choong et al., 2016). Keeping this part in memory, we ana-
lyzed the differential gene expression pattern for two signifi-
cant neurological disorders, namely Guillain-Barré syndrome
(GBS) and autism spectrum disorder (ASD), to identify poten-
tial candidate biomarkers for therapeutic purposes. Guillain-
Barré syndrome (GBS) is an autoimmune disorder that affects
the peripheral nervous system and is associated with a wide
range of comorbidities, including rapidly evolving muscle
weakness, a lack of myotatic reflexes, moderate sensory loss,
and areflexia (Dimachkie & Barohn, 2013; Wang et al,, 2016).
Besides, autism spectrum disorder is also a neurological dis-
order characterized by persistent deficits in social communi-
cation and interactions (Brown et al., 2017; Cryan et al,
2020). Despite having great clinical value, the interconnec-
tion between GBS and ASD remains a mystery. Hence, we
have used several bioinformatics approaches to evaluate the
expression patterns of significant DEGs and their pathways
related to GBS and ASD, which can be impactful therapeutic
targets for these two disorders. The remaining study was
completed with the analysis of PPIs, hub genes identification
and module interpretation, TF-gene interactions, TF-miRNA
coregulatory network, and candidate drug detection.
Furthermore, we performed molecular docking, MM-GBSA,
DFT, molecular dynamics simulation, PCA, and DCCM
approaches to interpret the potency of the identified drug
candidates.

We studied two RNA-seq gene expression datasets
(GSE72748 and GSE113834) from GEO-NCBI and detected
693 and 365 DEGs respectively. To predict the connections
and probable drug compounds for GBS and ASD, 17 com-
mon DEGs were identified. Following that, related GO terms
and pathways were identified according to the lower pvalue
using these 17 DEGs. In terms of GO biological processes,
positive regulation of cAMP-mediated signaling, regulation of
cAMP metabolic process, positive regulation of purine
nucleotide, and positive regulation of cyclic nucleotide are
the topmost GO terms. One of the most vital elements for
neuronal expansion, plasticity, and regeneration is cAMP.
Members of the cAMP-dependent second-messenger path-
ways have a role in cellular proliferation and differentiation,
as well as embryonic development, especially neurodevelop-
ment (Blaschke et al., 2000). Notably, protein kinase A (PKA)
is triggered by cAMP, and various studies have suggested
that proteins involved in the PKA pathway may be linked to
autism (Ji et al, 2011). Also, in a previous study, it was
claimed that, for therapeutic interventions, molecular compo-
nents that participate in cAMP-mediated signaling pathways
can serve as appealing drug targets due to their contribution
as a second messenger in the central nervous system (Lee,
2015).

The top GO terms for molecular function are CXCR che-
mokine receptor binding, chemokine activity, chemokine
receptor binding, and cytokine activity. MIF (Macrophage
migration inhibitory factor) signaling is activated after bind-
ing of the chemokine receptors, CXCR2, CXCR4, and CXCR7
(Jankauskas et al., 2019). MIF has been studied as a neuroen-
docrine mediator and plays a pro-inflammatory role in vari-
ous immunoinflammatory and autoimmune conditions such
as type 1 diabetes, multiple sclerosis, Guillain-Barré syn-
drome, and different types of cancers, including neuroblast-
oma (Benedek et al, 2017; Cavalli et al., 2019; Cvetkovic
et al., 2005; Fagone et al.,, 2018; Kasama et al., 2010; Leyton-
Jaimes et al, 2018; Mangano et al., 2018; Nicoletti et al.,
2005; Presti et al., 2018; Soumoy et al., 2019). The synthesis
of CXCRs was found to change in ASD patients in several
investigations. The gene expression of the CXCR2, CXCR3,
CXCR5 and CXCR7 receptors was found to be higher in
patients with ASD (Ahmad et al., 2018). Furthermore, the top
GO terms according to the cellular component are collagen-
containing extracellular matrix, secretory granule lumen, and
tertiary granule lumen. To date, no evidence of these cellular
components playing a role in GBS or ASD has been reported.

The relevant KEGG, WikiPathways, and Bioplanet pathways
for GBS and ASD were then determined. The research was
carried out using common DEGs to uncover pathways that
were identical in both GBS and ASD. Viral protein interaction
with cytokine and cytokine receptor, Cytokine-cytokine
receptor interaction, and chemokine signaling pathway are
the major KEGG pathways identified in the current study.
Chemokines appear to be a special type of neurotransmitter
that control a wide range of biological processes, including
neural development, neuroinflammation, and synaptic trans-
mission (Rostene et al., 2011). Chemokine receptor signaling
elements may offer novel therapeutic options for children



with autism spectrum disorder and other neurological
impairments because the chemokine signaling pathway has
been reported to be involved in the peripheral and central
nervous system (Ahmad et al, 2018; Ubogu, 2013).
Meanwhile, the chemokine signaling pathway, type Il inter-
feron signaling, and toll-like receptor signaling pathway were
identified as top WikiPathways. Type Il interferon (IFNy) con-
tributes to neurodegeneration in a variety of CNS disorders;
however, its particular role in CNS inflammation is not fully
understood (Kulkarni et al., 2016). In earlier investigations,
toll-like receptors are involved in several diseases of the cen-
tral nervous system, such as Alzheimer’'s and multiple scler-
osis (Carty & Bowie, 2011). In the BioPlanet pathway analysis,
binding of chemokines to chemokine receptors, cytokine-
cytokine receptor interaction, TWEAK regulation of gene
expression, and chemokine signaling pathway were found to
be the supreme pathways. According to recent studies, sup-
pression of TWEAK expression in the CNS has therapeutic
benefits in patients with multiple sclerosis and ischemic
stroke (Nagy et al., 2021).

The most important part of the investigation is the con-
struction and exploration of the PPIs network, which is inte-
gral for hub gene identification, module analysis, and
probable drug prediction. The 17 common DEGs underwent
the PPI analysis to build the network. The PPl network desig-
nated CCL5, CCL18, CXCL12, CXCL1, CXCL8, CCL2, CXCL9,
CXCL10, CXCL2, and CCL3 genes as hub genes due to their
high interaction rate. Furthermore, essential modules based
on the PPl network were also identified because these dense
areas reveal valuable insights into the molecular nature of
different types of disorders (Vlaic et al., 2018). Among the
common DEGs, CXCL9, CXCL10 and PF4 were found in the
module analysis, while the CXCL9 and CXCL10 genes are also
the identified hub genes. Previously, CXCL10 was elevated in
the CSF of patients with GBS or CIDP, while a reduced con-
centration of CXCL9 and CXCL10 was also reported in other
studies. These previous findings validate the relevance of the
current study.

Following that, we also identified some transcriptional fac-
tors that are essential for the functions of these common
DEGs. The pathogenicity of various human diseases like neu-
rodegenerative disorders and ischemic damage is related to
the uncontrolled expression of these transcriptional regula-
tors (Kane & Citron, 2009). Likewise, transcriptional factors
contribute to a variety of biological processes, and the
abnormal activity of these TFs may be promising therapeutic
targets (Papavassiliou & Papavassiliou, 2016). In the TF-gene
interaction network, TNXB was regulated by the highest
number of TF-genes with a degree value of 57. Here, CXCL10
and CXCL9 also exhibited a notable interaction. The degree
values of CXCL10 and CXCL9 were 9 and 6, respectively, in
our TF-gene network. Evidence from the literature reveals
that, under physiological and pathological conditions, CXCL9,
CXCL10, and CXCL11, together with their receptors, play a
pivotal role in the central nervous system (Koper et al.,
2018).

Furthermore, the coregulatory network of miRNAs and TFs
was constructed, as these regulatory molecules act as
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potential biomarkers in different complex disorders. To date,
an increasing number of miRNAs have been shown to be
critical for the pathogenesis of neurological diseases
(Nudelman et al., 2010). The expression of miRNAs is altered
in conjunction with the onset and progression of disorders
in the central nervous system. Therefore, miRNA-mediated
regulation could play a significant role in the initiation and
progression of neurological disorders and may serve as a
new biomarker (Wang et al., 2014). A total of 85 miRNAs
were identified in this study. Among miRNAs, miR-135, miR-
135b, and miR-186 were connected to CXCL9 and CXCL10 in
the coregulatory network and were found to have roles in
neurological disorders in earlier studies (Che et al., 2014;
Samadian et al., 2021; Yang et al., 2018). Both miR-135, miR-
135b, and miR-186 previously showed a negative regulatory
effect on the expression and activity of BACE-1 and thus play
a significant role in the progression of Alzheimer’s disease
because BACE-1 is a key drug target for AD (Kim et al., 2016;
Liu et al, 2014; Zhang et al., 2016). miR-135b played a pro-
tective role in Parkinson’s disease by inhibiting pyroptosis by
targeting FoxO1 (Zeng et al,, 2019). Although the direct con-
nection between the identified miRNAs and GBS or ASD is
not proven yet but their role in other neurological disorders
denotes their ability to work as potential biomarkers in GBS
and ASD.

Next, probable drug candidates for GBS and ASD were
identified from the DSigDB database utilizing the 17 com-
mon DEGs. Here, we highlighted the top 10 drug candidates
(Table 4) where gadodiamide hydrate CTD 00002623, imati-
nib CTD 00003267, and cicloheximide PC3 UP were identified
as the top candidates based on their lower pvalue.

Then, the top 10 drug candidates went through molecular
docking analysis to dictate their efficacy. Candidates were
docked with the chemokine receptor CXCR3. The chemokine
receptor CXCR3 is activated by the chemokines CXCL9,
CXCL10, and CXCL11 (Andrews & Cox, 2016; Schmidt et al.,,
2015), and previous studies have shown that CXCL9, 10, and
11 all bind to CXCR3 (Campanella et al., 2008; Muller et al.,
2010). In this study, both CXCL9 and CXCL10 were identified
as hub gene and essential module, and also most of the
drug molecules interacted with them. Hence, we choose the
CXCR3 receptor to implement the molecular docking analysis
with the candidate drug molecules. Imatinib exhibited the
highest binding affinity score of —7.338kcal/mol in the
molecular docking study. Imatinib interacted with the amino
acid residues TYR-270, PHE-46,130, GLU-292 and LYS-299 of
the CXCR3 protein by forming different types of bonds.
Although there is no information in the literature linking
these amino acid residues directly with GBS and ASD, the
relevance of this research is indicated by their roles in neuro-
transmission and neuroprotection (Cheng et al., 2020; Crupi
et al, 2019; Kolacheva et al,, 2022). In addition, we calculated
the MM-GBSA score to predict the binding free energy of
the docked complexes where imatinib showed the highest
dGbind score of —68.27 kcal/mol. Studies have shown the
role of imatinib in modulating the pathophysiological state
of a number of disorders affecting the brain and spinal cord,
such as Alzheimer's disease, Parkinson’s disease, stroke,
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multiple sclerosis, and spinal cord injury (Kumar et al., 2019).
The density functional theory calculation was also employed
as it determine the pharmacological properties of small mol-
ecules (Bouback et al., 2021). We calculated the HOMO,
LUMO, and their energy gap values. A greater energy differ-
ence is always expected for small compounds to become
bioactive (Zhan et al,, 2003). In this study, the HOMO-LUMO
values and the energy gap between them indicate the bio-
active properties of imatinib.

To further our investigation, we conducted molecular
dynamics (MD) simulations to ascertain the structural stabil-
ity of the imatinib-CXCR3 receptor complex. The root mean
square deviation (RMSD) and root mean square fluctuation
(RMSF) values of the complex remained below 3 A, indicat-
ing the stability of the complex. Furthermore, the complex
demonstrated a consistent conformation in terms of radius
of gyration (Rg), solvent accessible surface area (SASA), and
intramolecular interaction bond analysis. Over the course of
the 100ns simulations, the CXCR3-imatinib complex exhib-
ited minimal fluctuations, confirming the compactness of
the system. The reliability of the MD simulations was fur-
ther corroborated by employing principal component ana-
lysis (PCA) and dynamic cross-correlation map (DCCM)
analysis. PCA results revealed limited variations, while
DCCM analysis exhibited a strong correlation between
CXCR3 and imatinib, affirming the validity of MD simula-
tions. Finally, the determination of the binding free energy
(MM-GBSA) was carried out based on the analysis of post
MD simulation trajectories. Notably, a substantial increase in
net negative binding free energy (-83.66kcal/mol) was
observed following the simulation of the CXCR3-imatinib
complex. This observed enhancement in binding free
energy serves as compelling evidence, highlighting the con-
gruence between the binding free energy derived from
molecular docking data and the MM-GBSA values obtained
from the MD simulation trajectories.

In summary, the current study attempted to uncover the
interconnection between GBS and ASD through different bio-
informatic approaches. Identified pathways and gene onto-
logical pathways using common DEGs were found to interact
with hub genes, especially with CXCL9 and CXCL10. CXCL9
and CXCL10 were prioritized over the other hub genes due
to their presence in the module analysis and their roles in
various neurological disorders according to earlier studies.
Furthermore, identified TFs and miRNAs that are connected
to CXCL9 and CXCL10 were previously found to have roles in
brain disorders. Among the drug molecules, imatinib exhib-
ited the best binding affinity and MM-GBSA score with the
CXCR3 receptor and remained stable throughout the simula-
tion process. Imatinib interacted with the hub genes CXCL9
and CXCL10 in the drug candidate identification process via
the DSigDB database. The findings of this network-based
study demonstrated a discernible correlation between the
hub genes CXCL9 and CXCL10 and all observed outcomes,
thereby establishing the relevance of this research endeavor.
Hopefully, the biomarkers identified in this study may pro-
vide significant insights into the pathophysiology of GBS and
ASD, and the identified drug molecules may show a

treatment path for these two brain disorders. At the same
time, this study does not have clinical validation. Therefore,
further laboratory-based research is highly recommended for
clinical validation.

5. Conclusion

Despite recent advancement of science and biological
research, the definite link between GBS and ASD has not
established yet. Hence we evaluated the differential expres-
sion pattern of genes from two RNA-seq data to discover
potential biomarkers and drug candidates for GBS and ASD.
The present study identified several relevant pathways, such
as the cAMP-mediated signaling pathway, the chemokine
signaling pathway, and the toll-like receptor signaling path-
way, that had been somewhat related to neurological disor-
ders before. A total of ten hub genes were identified in the
current investigation, where CXCL9 and CXCL10 were also
found in the module analysis. The rest of the analysis was
performed by predicting the subsequent TFs, miRNAs, and
target drug molecules. Among the drug molecules, imatinib
exhibited the highest binding affinity and MM-GBSA score
with the CXCR3 receptor. In addition, the complexes
remained stable during the molecular dynamics simulation
and fluctuated less. The results of MD Simulations were fur-
ther validated by PCA and DCCM analysis supporting the
potential of imatinib as a treatment option for GBS and ASD.
We tried to put a spotlight on the mysterious relationship
between GBS and ASD throughout the study. Although this
study may help to identify some potential biomarkers and
drug candidates for GBS and ASD, further laboratory research
is necessary for clinical validation.
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